

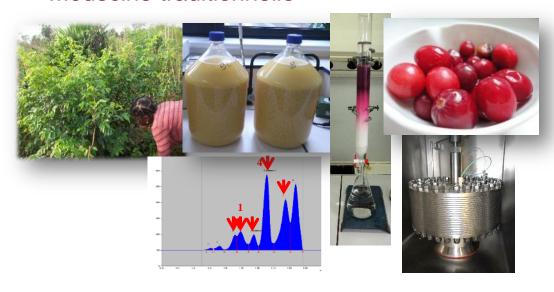
L'HPTLC un outil versatile pour l'enseignement en phytochimie.


Leslie Boudesocque-Delaye

EA 7502 SIMBA

Faculté de Pharmacie de Tours

EA 7502 SIMBA


Nouvelles voies d'accès Synthèse et extraction Nouvelles molécules pour la cancérologie et l'infectiologie

Sous groupe Phytochimie

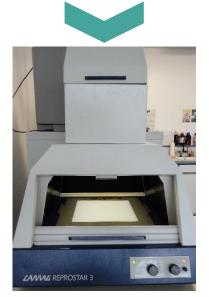
Médecine traditionnelle

Biomasses microalgales

Activités d'enseignements en lien avec HPTLC

- Pharmacie 3^{ème} année
 - UE Libre Plantes alimentation et santé
 - Compléments alimentaires
 - UE Cannabis et opium de l'addiction à la thérapeutique
 - Expertises médico-légales
- Licence professionnelle Formulation et Contrôle Qualité des cosmétiques
 - UE Matière première et Contrôle qualité
 - Optimisation d'un extrait
 - UE Contrôle qualité
 - Matières parfumantes
- M2 Plantes et Société
 - UE Extraction et analyse de plantes
 - Optimisation d'un extrait

Equipement au laboratoire pour les TP

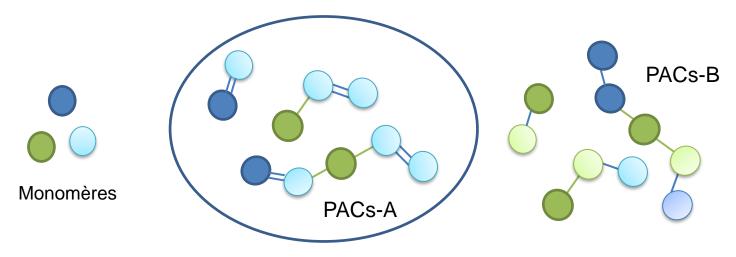


Différences enseignement / recherche

- Gamme de solvants utilisables plus limitée
 - Cuve de migration préparées par les enseignants en fonction de l'éluant
 - Moins de problème avec l'ADC2
- Quantités requises pour la préparation d'échantillons souvent plus élevées
 - Adaptation au matériel de TP
 - Matières premières abondantes
- Plaques visuelles
 - Utilisation de révélateurs
 - Privilégie le reprostar

Applications en enseignements

- Quantitative
 - Dosage de PACs dans complément alimentaire à base de cranberry
- Semi quantitative
 - Expertise de lots de cannabis
- Qualitative
 - Etude de parfums / huiles essentielles


- Thématique de recherche du laboratoire
- Vaccinium macrocarpon Ait. = canneberge à gros fruits
- Utilisée depuis un siècle en Amérique du Nord en prévention des infections urinaires
- Allégation Santé accordée par l'ANSES (2004), ANSM (2008) et EMEA
 - Jus de cranberry et baies déshydratées
 - Prophylaxie non-antibiotique
- Remise en cause
 - Reproductibilité des études

Problématique

- De plus en plus de compléments alimentaires avec allégation santé sur le marché
- Dose conseillée : 36 mg de PAC-A par jour pour les infections urinaires
 - Fixée arbitrairement (300 ml jus de cranberry)
 - Méthode de dosage reconnue : BL-DMAC
 - Dosage global : monomères, polymères

Méthode BL-DMAC

- Biais possibles
 - Surestimation des doses apportées si
 - Proportion élevée de monomères inactifs
 - Mélange avec d'autres plantes sources de PAC-B inactives
 - Dosage sans valeur sans informations sur le profil en PACs du produit
 - Pour l'interprétation des données biologiques
 - Complément d'information via HPTLC
 - Utilise un marqueur de qualité : PAC-A₂ seul dimère de PAC-A commercial

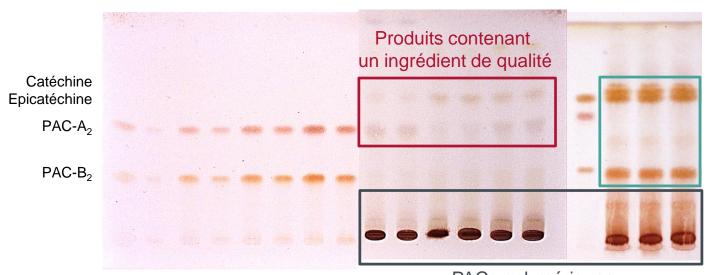
- Dans le cadre UE Plantes alimentation et Santé
 - Mise au point d'un TP
 - Se basant sur nos travaux
 - Adaptation du protocole
- Extraction de compléments alimentaires
- Purification des polyphénols
- Analyse DMAC et HPTLC des extraits

Club de CCM Strasbourg 2018

Quality control of commercial cranberry products: HPTLCdensitometry a new deal

Leslie Boudesocque-Delaye ^a, Arnaud Lanoue ^b, Joëlle Dorat ^a, Frank Bruyère ^c, Alain Gueiffier d, Cécile Enguehard-Gueiffier d.

- Extraction des PACs
 - Changement du solvant : eau
 - 2 extractions successives : souvent incomplet
 - Pour pouvoir passer directement à l'étape de purification sans évaporation
- **Purification**
 - Élimination des excipients gênants
 - Passage sur colonne XAD-16
 - Lavage à l'eau puis élution des PACs au MeOH
 - Evaporation, calcul du rendement d'extraction


Extrait utilisé pour l'analyse DMAC et HPTLC

- Analyse BL-DMAC
 - En plaque 96 puits
 - Gamme de PAC-A₂: 5 à 40 μg/mL dans MeOH
 - Mesure absorbance à 640 nm pendant 25 min (cinétique)
 - Obtient teneur globale en PACs, à ramener dans la prise journalière
 - Produits testés permettent d'atteindre la dose recommandée
 - PACs journaliers de 36 mg par jour
 - Puis analyse du profil par HPTLC

- Dépôts des échantillons à tester:
 10 µl en bande de 8 mm, à 80 nl/s, espace entre les bandes 5 mm
- Phase mobile :
 •CH₂Cl₂/AcOEt/Ac formique (6:10:2, v/v)
- RévélationAnisaldéhyde sulfurique
- •Densitométrie : lumière blanche

Produit contenant plus de raisin que de cranberry

PACs polymériques

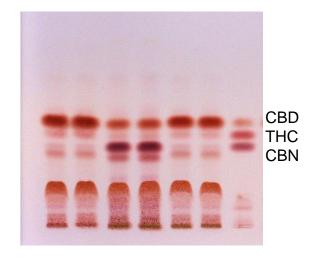
- Dosage teneur en PAC-A₂
 - Ramenée à la prise journalière recommandée
 - ≥ 1 mg / jour dans les conditions du TP
- Détection des monomères épicatéchine et catéchine + dimères de PAC-B
 - Renseigne sur la qualité

Nouvelle « lecture » de la dose globale de PACs À la lumière de ces données

- Compétences / notions acquises
 - Un dosage global n'a pas toujours de sens seul
 - Une même teneur globale peut cacher des profils très différents
 - HPTLC peut être quantitative
 - Une connaissance du profil phytochimique est nécessaire pour l'analyse de données biologiques

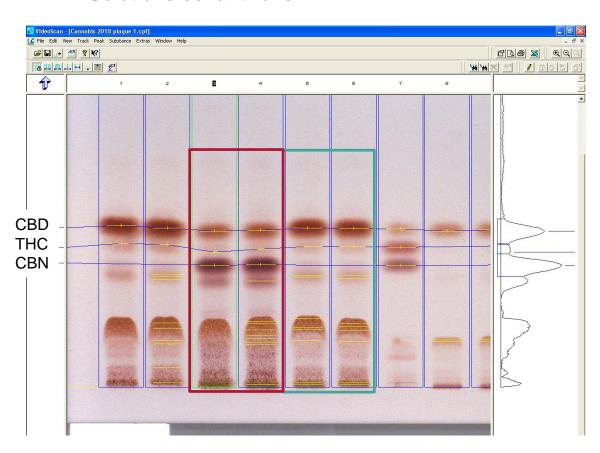
- Dans le cadre UE Cannabis et Opium
- But : expertise médico-légale de saisie douanière
 - Utilise le référenciel UNODC
 - Guide destiné aux laboratoires

- Lots de plantes anonymés :
 - Cannabis textile (2≠), cannabis résine
 - Houblon, aigremoine, ortie : faux positifs à un ou plusieurs tests
 - Monographies de la pharmacopée européenne à disposition



- Démarche analytique minimale :
 - Analyse macro- et microscopique
 - Tests colorimétriques (3 ≠): BEAM, sel de bleu, Ghamravy
 - Analyse chromatographique par CCM
- Pour les lots positifs :
 - Discrimination Cannabis textile ≠ cannabis résine
 - Par chromatographie : ici HPTLC
 - Calcul du ratio d'AUC

$$x = \frac{A_{THC} + A_{CBN}}{A_{CBD}}$$
 X > 1 Cannabis de type résine X < 1 Cannabis de type textile



- Solutions échantillons :
 - Extrait éther de pétrole repris dans 2 mL.
- Dépôts des échantillons à tester:
 - 10 µl en bande de 10 mm, à 120 nl/s, espace entre les bandes 5 mm
- Dépôts des références :
 - THC, CBD et CBN à 0,5 mg/ml
- Phase mobile:
 - Heptane/éther diéthylique (80:20, v/v), développement sur 9 cm.
- Réactif à pulvériser :
 - Solution de sel de bleu solide
- Analyse densitométrique : à la lumière blanche après révélation

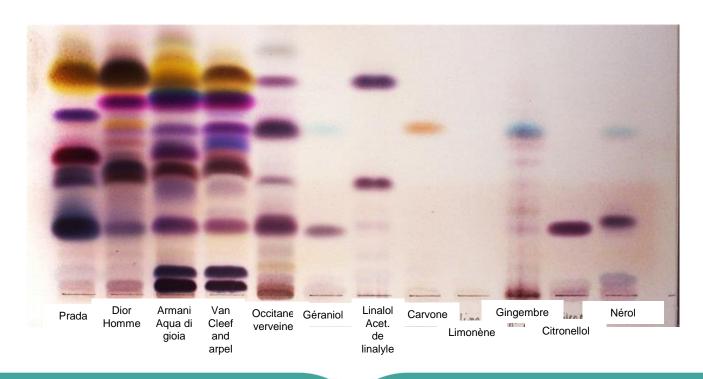
Solutions échantillons :

$$x = \frac{A_{THC} + A_{CBN}}{A_{CBD}}$$

$$x = \frac{38230 + 381920}{272674} = 1,54$$

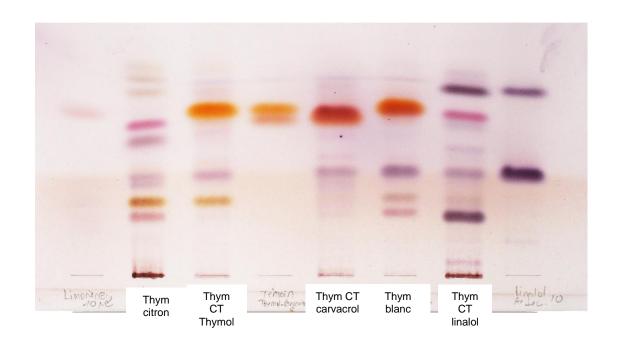
$$x = \frac{46320 + 0}{438390} = 0,10$$

- Compétences / notions acquises
 - L'analyse microscopique est cruciale face à des échantillons inconnus
 - Il faut multiplier les tests et analyses lors d'une expertise
 - Éviter les faux positifs ou négatifs
 - CCM fait partie intégrante des démarches de routine des labos d'expertise
 - HPTLC permet une discrimination rapide entre cannabis fibre/résine



- Dans le cadre du contrôle de matières premières à huile essentielle
- En LP Cosmétologie et en M2 Plantes et Société
- Distillation pendant 1 à 2h d'huile essentielle (Menthe, Romarin, Verveine, Lavande)
- Récupération de l'HE distillée et comparaison avec des témoins et HE commerciales
 - Déterminer le chémotype
- Comparaison de parfums contenant la note identique
 - Localisation des composés présents dans l'HE

- Dépôts des échantillons à tester: •10 µl en bande de 8 mm, à 120 nl/s, espace entre les bandes 4 mm
- Révélation Vaniline sulfurique


- Phase mobile:
 - •Toluène/AcOEt (95:5, v/v)

- Dépôts des échantillons à tester: •10 µl en bande de 8 mm, à 120 nl/s, espace entre les bandes 4 mm
- Révélation Vaniline ou anisaldéhyde sulfurique suivant la plante

Phase mobile: •Toluène/AcOEt (95:5, v/v)

- Compétences / notions acquises
 - Les parfums et HE sont des mélanges de molécules complexes
 - L'HPTLC et CCM sont des outils simples pour l'analyse rapide de tels mélanges
 - Visualisation concrète des chémotypes
 - Mise en évidence d'une signature parfumeur

Conclusion

- Nombreuses applications possible pour l'HPTLC en enseignement
- Technique rapide et visuelle : avantage pédagogique
- Nécessite la connaissance des bases en CCM
- Adaptable du niveau L2 au M2 suivant le niveau de complexité et de traitement de données

Merci de votre attention

leslie.boudesocque@univ-tours.fr