

Analyse et dosage de phytomédicaments par Chromatographie sur Couche Mince Haute Performance : application aux flavonoïdes de l'aubépine et de la passiflore, au saponoside du marronnier commun et aux salicylés de la reine des prés

Florent ROUBALLAY - Nicolas VAZ

Sous la direction de Jacques POTHIER

Diplôme de Docteur en Pharmacie

24 janvier 2012

La phytothérapie

- > médecine par les plantes
- > très ancienne
- > abandonnée au XIXème siècle
- > renouveau ces 50 dernières années
- > médecine considérée comme sûre, naturelle
- progrès scientifiques
- > création d'organismes de phytothérapie

Plan

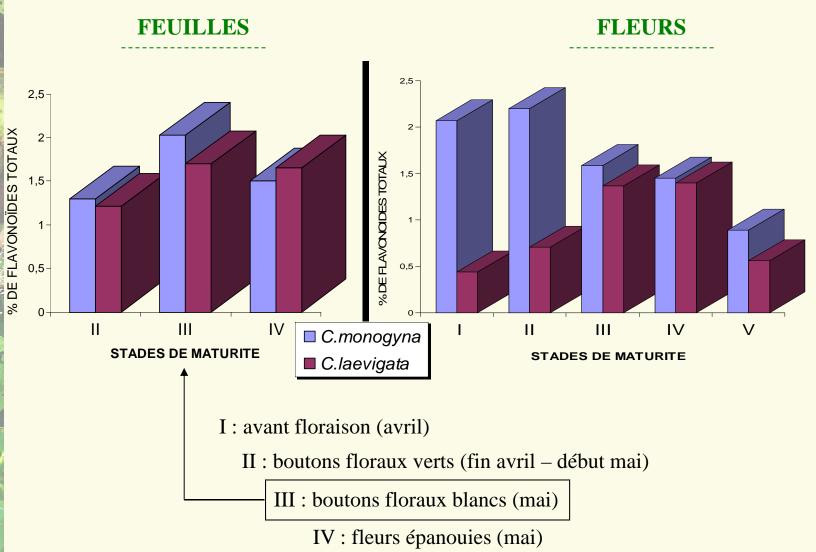
I. De la plante au conditionnement

- A- Récolte
- B- Macroscopie
- C- Microscopie
- D- Procédés de fabrication SIPF et TM
- E- Les plantes étudiées

II. Du conditionnement au consommateur

- A- Matériel utilisé en CCMHP
- **B-** Protocole
 - 1) Recherche de l'éluant
 - 2) Recherche du révélateur
 - 3) Recherche du volume de dépôt
 - 4) Identification des composés
- C- Fingerprint
- D- Dosage
- E- Conformité aux Pharmacopées

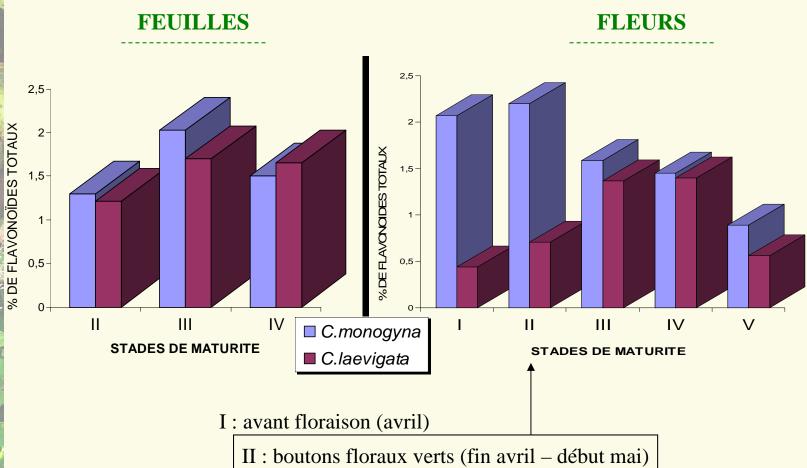
Plan


I. De la plante au conditionnement

- A- Récolte
- B- Macroscopie
- C- Microscopie
- D- Procédés de fabrication SIPF et TM
- E- Les plantes étudiées

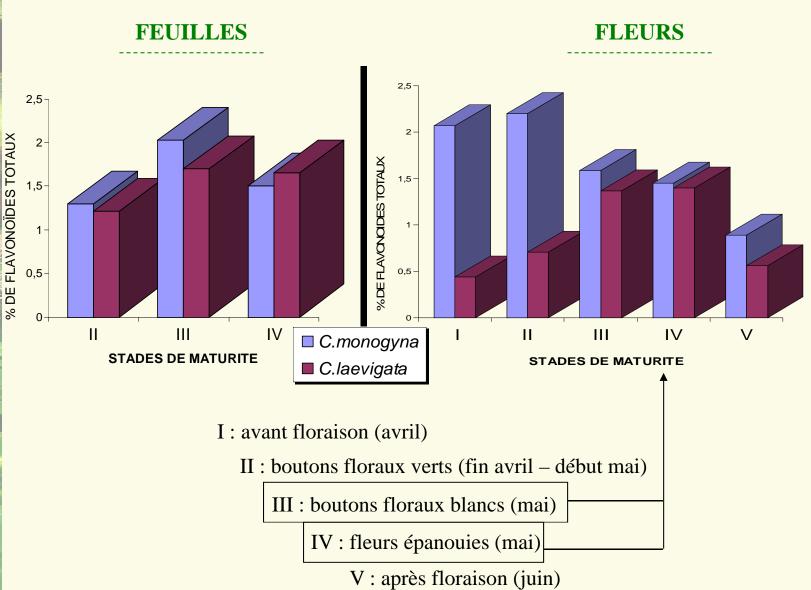
II. Du conditionnement au consommateur

- A- Matériel utilisé en CCMHP
- B- Protocole
 - 1) Recherche de l'éluant
 - 2) Recherche du révélateur
 - 3) Recherche du volume de dépôt
 - 4) Identification des composés
- C- Fingerprint
- D- Dosage
- E- Conformité aux Pharmacopées


A- Récolte

V : après floraison (juin)

A- Récolte



III : boutons floraux blancs (mai)

IV : fleurs épanouies (mai)

V : après floraison (juin)

A- Récolte

B- Macroscopie

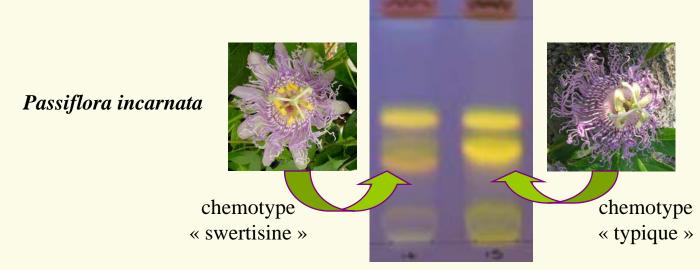
- avec l'appui de la Pharmacopée
- évite la confusion entre différentes espèces

	Crataegus laevigata	Crataegus monogyna
Feuilles		
Fleurs		

I. De la plante au conditionnement *B- Macroscopie*

520 espèces Une seule active

I. De la plante au conditionnement B- Macroscopie



520 espèces Une seule active

Mais la macroscopie peut s'avérer insuffisante → existence de chemotypes au sein d'une même espèce

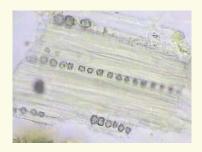


C- Microscopie

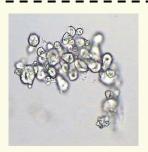
- avec l'appui de la Pharmacopée
- confirme l'analyse macroscopique
- recherche de falsifications et d'éléments étrangers

Passiflore

« grains de pollen avec une exine réticulée »


Aubépine

« grains de pollen triangulaires, à 3 pores germinatifs et exine légèrement granuleuse »


Reine des prés

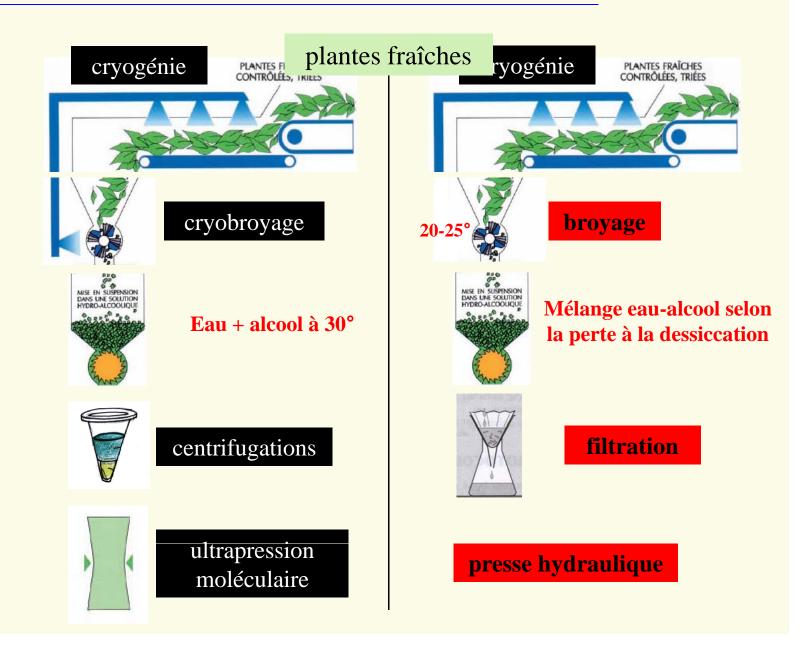
« mésophylle contenant des macles d'oxalate de calcium »

Marronnier commun

« grains d'amidon regroupés en forme de grappe »

Passiflore

« fragments de l'épiderme de la feuille avec des stomates anomocytiques et des parois sinueuses »


Passiflore

« poils unisériés, avec 1 à 3 cellules à parois minces, arqués, terminés en pointe parfois recourbée en crochet »

D- Procédés de fabrication des SIPF et des TM

E- Les plantes étudiées

Plantes	Composés majoritaires	Indications	
Aubépine	flavonoïdes proanthocyanidols	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	
Marronnier commun	saponosides (aescine) proanthocyanidols	troubles de la fragilité capillaire cutanée manifestations de l'insuffisance veineuse signes fonctionnels liés à la crise hémorroïdaire	
Reine des prés	salicylés flavonoïdes	douleurs articulaires dans leurs formes mineures faciliter les éliminations urinaire et digestive	
Passiflore	alcaloïdes (dérivés de la β-carboline) flavonoïdes maltol	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	

E- Les plantes étudiées

Plantes	Composés majoritaires	Indications	
Aubépine	flavonoïdes proanthocyanidols	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	
Marronnier commun	saponosides (aescine) proanthocyanidols	troubles de la fragilité capillaire cutanée manifestations de l'insuffisance veineuse signes fonctionnels liés à la crise hémorroïdaire	
Reine des prés	salicylés flavonoïdes	douleurs articulaires dans leurs formes mineures faciliter les éliminations urinaire et digestive	
Passiflore	alcaloïdes (dérivés de la β-carboline) flavonoïdes maltol	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	

E- Les plantes étudiées

Plantes	Composés majoritaires	Indications	
Aubépine	flavonoïdes proanthocyanidols	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	
Marronnier commun	saponosides (aescine) proanthocyanidols	troubles de la fragilité capillaire cutanée manifestations de l'insuffisance veineuse signes fonctionnels liés à la crise hémorroïdaire	
Reine des prés	salicylés flavonoïdes	douleurs articulaires dans leurs formes mineures faciliter les éliminations urinaire et digestive	
Passiflore	alcaloïdes (dérivés de la β-carboline) flavonoïdes maltol	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	

I. De la plante au conditionnement E- Les plantes étudiées

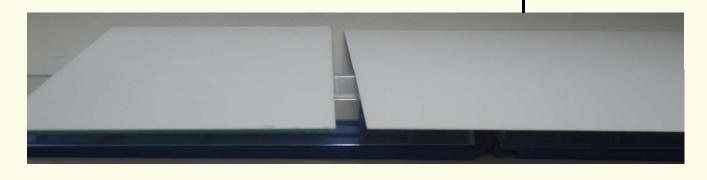
Plantes	Composés majoritaires	Indications	
Aubépine	flavonoïdes proanthocyanidols	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	
Marronnier commun	saponosides (aescine) proanthocyanidols	troubles de la fragilité capillaire cutanée manifestations de l'insuffisance veineuse signes fonctionnels liés à la crise hémorroïdaire	
Reine des prés	salicylés flavonoïdes	douleurs articulaires dans leurs formes mineures faciliter les éliminations urinaire et digestive	
Passiflore	alcaloïdes (dérivés de la β-carboline) flavonoïdes maltol	éréthisme cardiaque états neurotoniques troubles mineurs du sommeil	

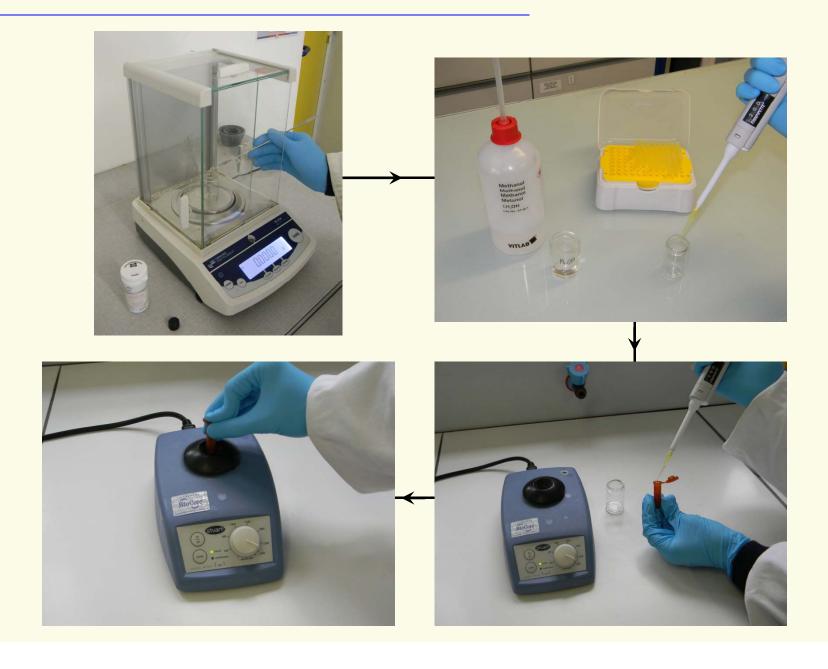
Plan

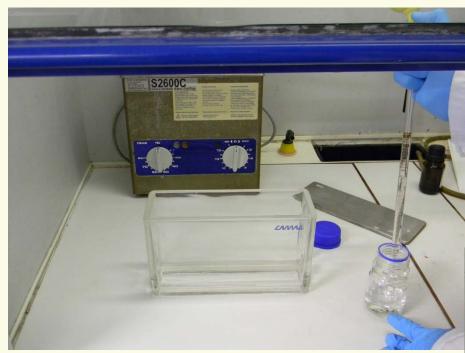
I. De la plante au conditionnement

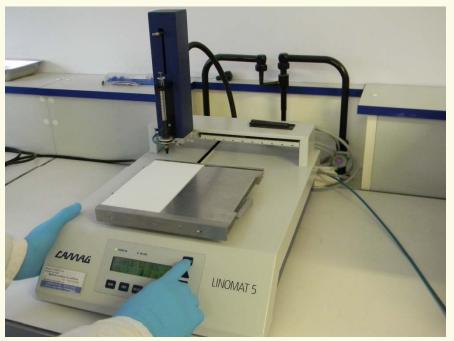
- A- Récolte
- B- Macroscopie
- C- Microscopie
- D- Procédés de fabrication SIPF et TM
- E- Les plantes étudiées

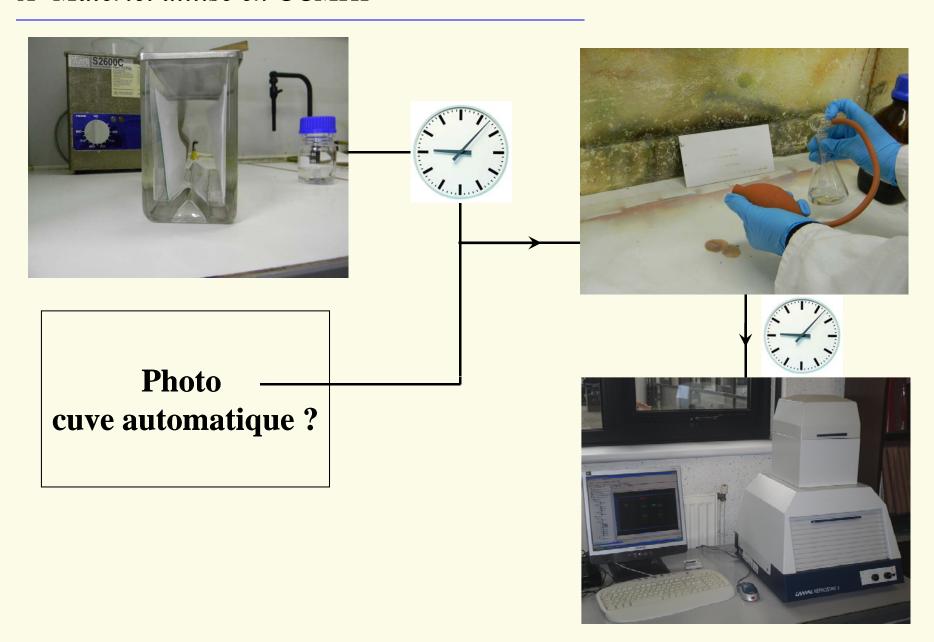
II. Du conditionnement au consommateur

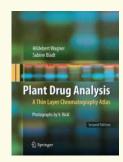

- A- Matériel utilisé en CCMHP
- **B-** Protocole
 - 1) Recherche de l'éluant
 - 2) Recherche du révélateur
 - 3) Recherche du volume de dépôt
 - 4) Identification des composés
- C- Fingerprint
- D- Dosage
- E- Conformité aux Pharmacopées


A- Matériel utilisé en CCMHP




Pré-migration



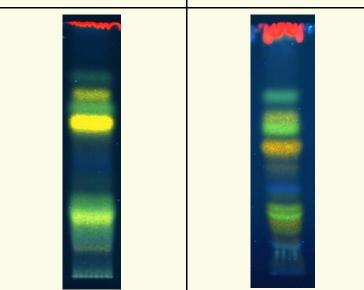


B- Protocole – recherche de l'éluant optimal

→ littérature consultée

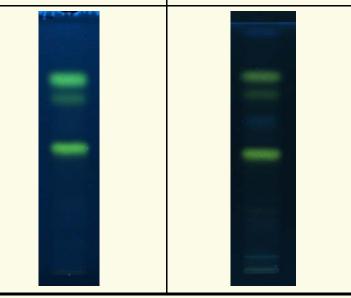
Certains éluants sont spécifiques à des classes de composés

Une même plante : la reine des prés


Flavonoïdes	Salicylés dans la plante	Salicylés dans l'HE	
acétate d'éthyle : acide formique : acide acétique glacial : eau (100:11:11:26)	acétate d'éthyle : méthanol : eau <i>(77:15:8)</i>	hexane: toluène (50:50)	
and A fedimented for A			

B- Protocole – recherche de l'éluant optimal

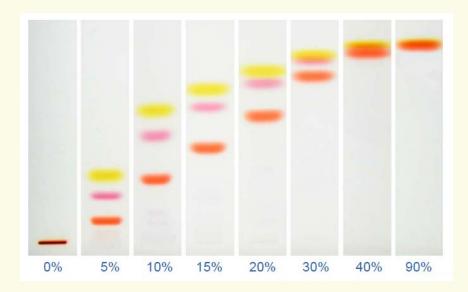
Passiflore


acide formique anhydre : eau : méthyléthylcétone : acétate d'éthyle (10:10:30:50) acétate d'éthyle : acide formique : acide acétique glacial : eau (100:11:11:26)

Aubépine

acide formique anhydre : eau : méthyléthylcétone : acétate d'éthyle (10:10:30:50)

acétate d'éthyle : acide formique : acide acétique glacial : eau (100:11:11:26)

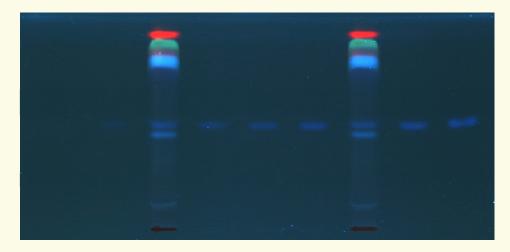


B- Protocole – recherche de l'éluant optimal

Mais les éluants décrits dans la littérature ne sont pas toujours optimaux

changement des proportions de l'éluant

<u>Eluant</u>: hexane + proportions croissantes d'acétate d'éthyle



révélateur optimal

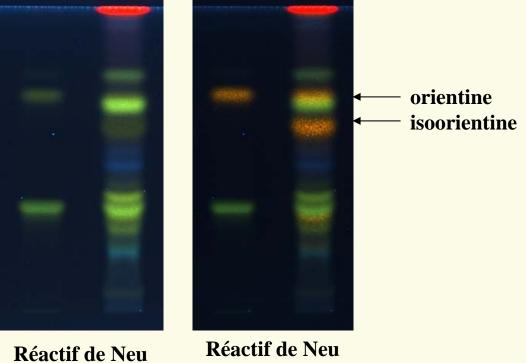
Le cas des composés fluorescents avant révélation

Acide salicylique – reine des prés

révélateur optimal

Le cas des composés fluorescents avant révélation

Acide salicylique – reine des prés


révélateur optimal

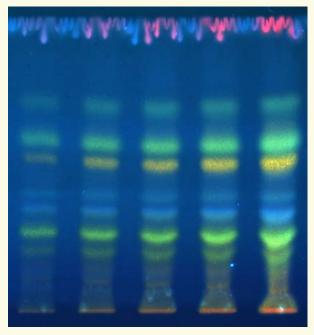
Si les composés d'intérêt ne sont pas naturellement fluorescents

→ recours à la pulvérisation d'un révélateur

- nombreux révélateurs
- généralement, spécificité de classe de composés
- travail minutieux

Passiflora incarnata

+ PEG-400


B- Protocole – volume de dépôt optimal

volume optimal

- ✓ mise en évidence d'un maximum de composés
- ✓ tout en garantissant la qualité des chromatographies (bonne séparation des bandes)

Passiflora incarnata

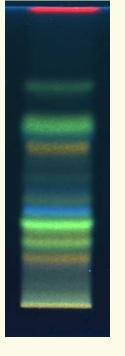
5 µL 8 µL 10 µL 13 µL 16 µL

B- Protocole – volume de dépôt optimal

Oser aller plus loin que les recommandations officielles...

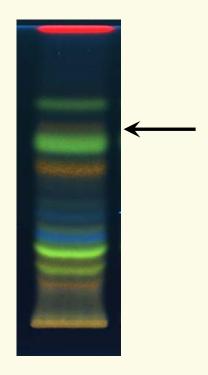
ESSAI

Autres espèces de *Passiflora*. Chromatographie sur couche mince (2.2.27).


Plaque: plaque au gel de silice pour CCM R.

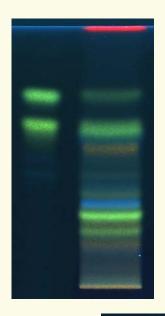
Dépôt : 10 µl, en bandes.

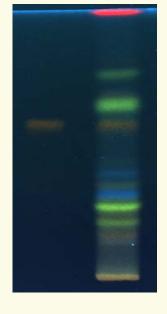
Développement: sur un parcours de 15 cm.


Séchage : à l'air.

Selon le protocole de la Pharmacopée

En doublant le volume de dépôt


Rapports frontaux conservés Apparition d'orientine



B- Protocole – identification des composés

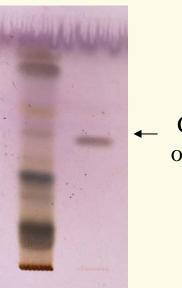
même Rf même coloration

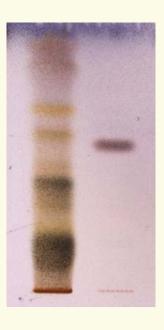
Confronter ses résultats à la littérature...

« la saponarine décrite à la fin des années 1960 n'a pas été retrouvée au cours d'analyses plus récentes : elle aurait été confondue avec le 2"-O-glucosyl-isovitexine » *Bruneton*

« la saponarine est absente » Wichtl & Anton

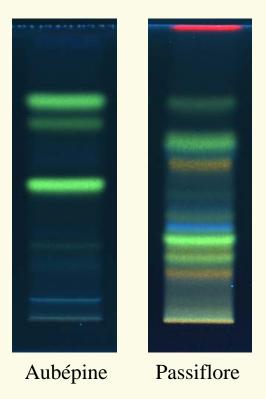
B- Protocole – identification des composés


Doute sur la présence d'un composé?


B- Protocole – identification des composés

Doute sur la présence d'un composé?

Changer d'éluant → ou de révélateur...



C- Fingerprint

Définition

empreinte chromatographique d'un extrait de plante, mettant en évidence les principaux composés pharmacologiquement ou chimiquement actifs

Intérêts

- * synergie entre différents composants
- * composants actifs non identifiés
- * existence de chémotypes
- * détection de falsifications

C- Fingerprint

Thème : élaboration de fingerprints et de dosages en CCM

ELABORATION DE FINGERPRINTS ET DE DOSAGES EN CHROMATOGRAPHIE SUR COUCHE MINCE DE DIVERS PHYTOMEDICAMENTS ISSUS DE LA FLORE FRANCAISE

Jacques Pothier, Joëlle Dorat, Jocelyne Dollet, Florent Rouballay et Nicolas Vaz Laboratoire de Pharmacognosie, UFR de Pharmacie, Université François Rabelais, TOURS

But : analyse de phytomédicaments selon les critères de la Pharmacopée

CONTEXTE

La chromatographie sur couche mince est une méthode de choix, à la fois qualitative et quantitative, pour l'analyse de plantes et de phytomédicaments. En effet, elle permet de réaliser des fingerprints (ou "empreintes digitales") mettant en évidence l'ensemble des composés de la plante étudiée. D'autre part, grâce à un équipement automatisé pour certaines étapes de la chromatographie, il est également possible de réaliser des analyses quantitatives.

Les monographies des Pharmacopées européenne et française identifient les plantes grâce aux caractères macroscopiques et microscopiques, ainsi qu'à une chromatographie sur couche mince mettant en évidence les principaux composés. Le laboratoire de pharmacognosie effectue ces différentes étapes d'identification.

Les plantes étudiées sont toutes cultivées en France et présentées sous forme d'extraits hydroalcooliques.

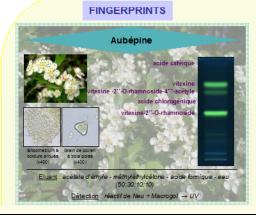
BUT DE L'ETUDE

Avant toute extraction ou tout traitement galénique, les plantes sont soumises à un contrôle de qualité, notamment l'analyse microscopique selon la monographie de la Pharmacopée européenne. Les extraits hydroalcooliques commercialisés en pharmacie doivent respecter les normes exigées par la Pharmacopée. Plusieurs fingerprints sont réalisés pour identifier les composés actifs contenus dans ces extraits, rechercher l'absence de falsification, ou parfois déterminer le chémotype utilisé. Des dosages sont ensuite effectués pour comparer à la teneur en principe actif imposée par la Pharmacopée européenne.

Plantes	Noms latins	Indications principales	
Aubépine	Crataegus laevigata	Éréthisme cardiaque, anxiété, troubles du sommeil	
Marronnier d'Inde	Aesculus hippocastanum	Insuffisance veino-lymphatique	
Mélilot	Melilotus officinalis	Insuffisance veino-lymphatique, troubles du sommeil	
Millepertuis	Hypericum perforatum	Manifestations dépressives mineures	
Passiflore	Passiflora incarnata	Anxiété, troubles du sommeil	
Reine des prés	Filipendula ulmaria	Douleurs articulaires, diurétique	
Valériane	Valeriana officinalis	Troubles du sommeil, anxiété	

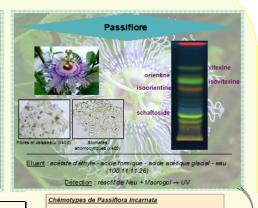
Comment : utilisation d'un matériel perfectionné et automatisé

PROTOCOLE


Plusieurs étapes de ces travaux sont réalisées selon un procédé automatisé. En effet, les substances à analyser et les témoins sont déposés sur des plaques HPTLC par le Linomat 5 (CAMAG). La migration s'effectue ensuite dans une cuve Twin double bac avec un éluant adapté. Après une révélation appropriée, les plaques sont photographiées par le Reprostar 3 (CAMAG). La luminosité des bandes obtenues est convertie en aire par le logiciel VideoScan 1.4 permettant ainsi d'obtenir une courbe de calibration.

C- Fingerprint

RESULTATS


Marronnier d'Inde

(mélange de saporines)

Grains d'aleucone (x400) Grains d'amison (x1000)

Eluant : chloroforme - acide acétique glacial - méthanol - eau (60:32:12:8)

Détection : anisaidéhyde sulfurique → visible

chémotype « swertisine »

isovitexine -swertisine ++

Découvert en 2010 : activité ?

chémotype « typique »

isovitexine ++ swertisine --

Activité reconnue

composition en C-plycosyl flavonoides. L'un est caracterise par des concentrations élevées d'isoviexine, de schañsoide et d'isoschaftoside, mais une absence de swertisine : ce chémotype est le plus rapporté dans la littérature et le plus utilise dans la hytnomédeile.
L'autre chémotype est domine des taux élevés de swertisine, mais de faibles teneurs en schaftoside et isoschaftoside.
L'existence de chémotypes au sein de cette espece soulière des phytomédicaments, l'efficacité du second chémotype et de ses composants n'ayant jamals été étudiée. Tant que les consequences pharmacologiques et thérapeutiques découlant de l'existence de ces deux chémotypes ne sont pas élucidées, les phytomédicaments devalent être préparés avec le chémotype
"typique".

Hans WOHLMUTH et al.,

Pharmacognosy and Chemotypes of Passionflower (Passiflora incarnata L.), Biol. Pharm. Bull. 33(6) 1015—1018 (2010)

C- Fingerprint

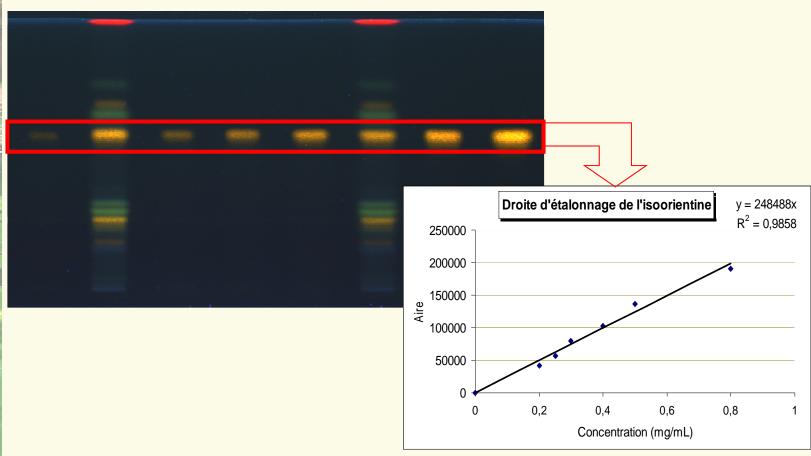
DOSAGES Mélilot Positions 1, 4 et 9: extrait hydroalocolique analysé; les autres dépôts sont des témoirs de coumarne déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs de coumarne déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 3 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 4 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 6 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 6 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 6 et 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration croissante. | Positions 7: extrait hydroalocolique analysé; les autres dépôts sont des témoirs d'acide salloyfique déposés en concentration concentration d'acide salloy

Conclusion: importance du fingerprint en chromatographie

CONCLUSION

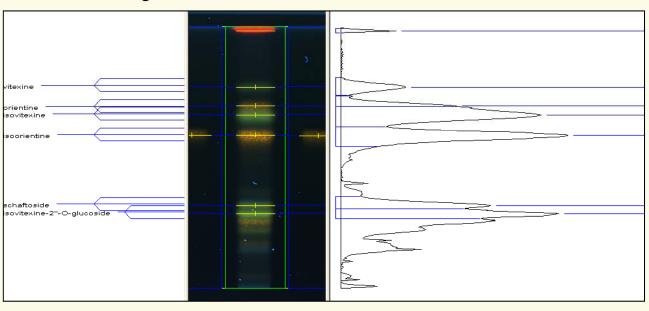
Lorsque l'activité de la plante est due à un composé déterminé, son dosage est essentiel afin de connaître son taux, et comparer à la teneur requise par la Pharmacopée. Cependant, la réalisation d'un fingerprint s'avère parfois être plus pertinente que de faire un dosage. En effet, pour certaines plantes, les molécules actives n'ont pas encore été identifiées, ou bien il existe une synergie entre les différents composants, réduisant la pertinence du dosage d'un seul composé : c'est par exemple le cas de l'aubépine (dosage de l'hypéroside) et de la passiflore (dosage de la vitexine), ce qui manque de rigueur puisque l'activité de ces plantes résulte d'une synergie entre tous ses composants. De même, la découverte de chémotypes ne cesse d'augmenter au fil des années et des recherches, et renforce l'intérêt du fingerprint en chromatographie.

12^{èmes} rencontres nationales de la SFPML – Toulouse - 2011


Source : Hans WCHLMUTH et al., Phermacognosy and Chemotypes of Passionflower (Passifore Incernets L.), Biol. Pherm. Bull. 33(6) 1015—1016 (201

D-Dosage

Matériel perfectionné pour la réalisation de la plaque


- + savoir-faire, soin particulier
- + logiciel adapté à l'analyse

II. Du conditionnement au consommateur *D-Dosage*

Extrapolation à l'ensemble des flavonoïdes

FLAVONOIDES	AIRES	%
vitexine	18560.6	6,1%
orientine	22518.8	7,4%
isovitexine	79085.7	26,0%
isoorientine	90512.3	29,7%
schaftoside	38955.0	12,8%
isovitexine-2"-O-glucoside	54625.9	18,0%
AIRES TOTALES	304258,3	100,0%

E- Conformité aux Pharmacopées

SIPF / Pharmacopée européenne

TM / Pharmacopée française pour préparations homéopathiques

Teneur calculée par rapport à la masse de plante sèche utilisée

Teneur calculée par rapport à la masse de TM utilisée

-1- nécessité de connaître la masse de plante fraîche dans un volume donné de SIPF

nécessité de connaître la masse volumique de la TM

-2- transformer le taux de plantes fraîches en équivalent en plantes sèches, à l'aide de la perte à la dessiccation Dosage: 1 mg/mLMasse volumique = 0.92 mg/mL $1 \text{ mg/} 0.92 \text{ g de } TM \Leftrightarrow 0.11\%$

Dosage: 1 mg/mL

-1- 1 mg/0,2 g de plante fraîche

-2- $1 \text{ mg}/0.05 \text{ g de plante sèche } \Leftrightarrow 2\%$

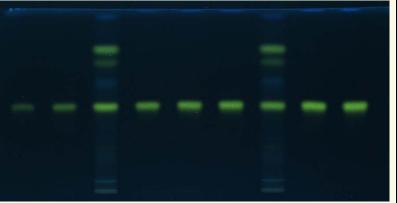
E- Conformité aux Pharmacopées

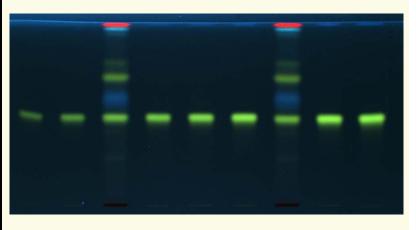
SIPF

Teneur requise par la Pharmacopée : flavonoïdes > 1,5 %

SIPF aubépine = 0,99%

Non conforme

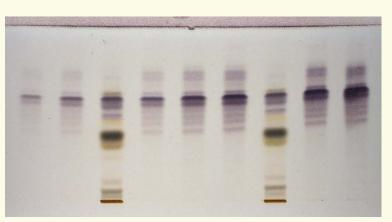


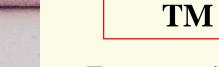

TM

Teneur requise par la Pharmacopée : flavonoïdes > 0,1 %

TM aubépine = 0,05%

Non conforme


E- Conformité aux Pharmacopées


SIPF

Teneur requise par la Pharmacopée : aescine > 0,25 %

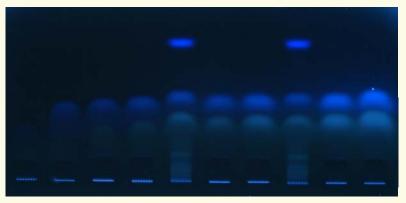
SIPF marronnier = 0,33%

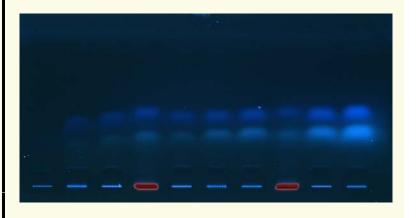
Conforme

Teneur requise par la Pharmacopée : aescine > 0,25 %

TM marronnier = 0,49%

Conforme




E- Conformité aux Pharmacopées

SIPF

TM

Teneur requise par la Pharmacopée : substances extractibles à la vapeur d'eau > 1 mL/kg

5,56 mL/kg

2,50 mL/kg

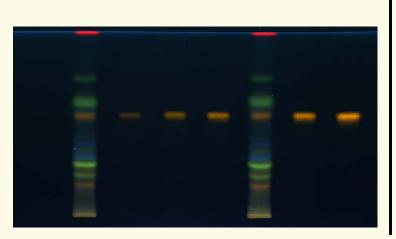
Mise en évidence de l'aldéhyde salicylique et du salicylate de méthyle dans l'huile essentielle

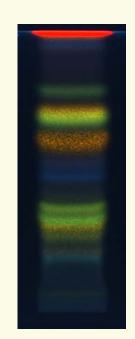
Conforme

Conforme

+ mise en évidence d'acide salicylique

+ mise en évidence de flavonoïdes

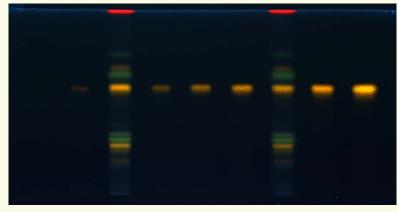

II. Du conditionnement au consommateur E- Conformité aux Pharmacopées


SIPF

Teneur requise par la Pharmacopée : flavonoïdes > 1,5 %

SIPF passiflore = 1,77%

Conforme



TM

Teneur requise par la Pharmacopée : flavonoïdes > 0,14 %

TM passiflore = 0,31%

Conforme

Conclusion

- > phytothérapie = médecine ancienne mais toujours aussi énigmatique
- > perpétuelle remise en cause : qu'est-ce qui agit ?
- > complexification avec la découverte de chémotypes
- ➤ la CCMHP est une méthode privilégiée dans l'analyse de phytomédicaments
- > nécessite un matériel perfectionné et un savoir-faire
- > travaux sur les SIPF et les TM : toutes conformes sauf pour l'aubépine
- > travaux à approfondir
- > phytomédicaments présents en officine
 - = traçabilité tout au long de la production
 - contrôle-qualité permanent, faisant appel à la CCMHP