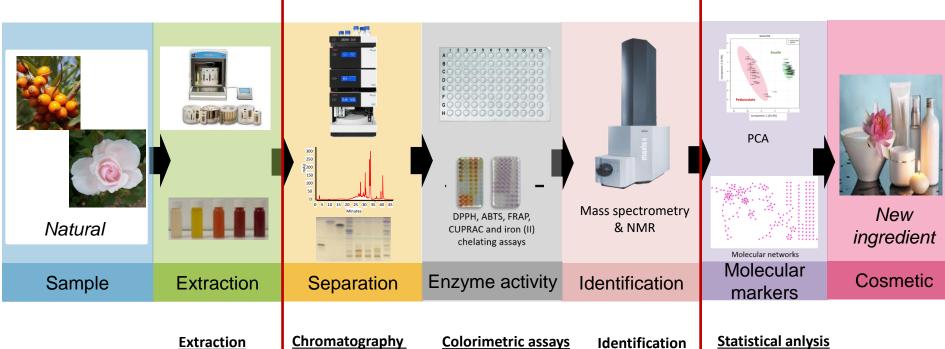


"Quantification de molecules bioactives naturelles et leurs caractérisations par HPTLC-MS"

Dr. DA SILVA David

INSTITUT DE CHIMIE ORGANIQUE ET ANALYTIQUE (UMR7311, Université d'Orléans)


CLUB de CCM - 20 ans de Chromacim

Montpellier, 07 juillet 2022

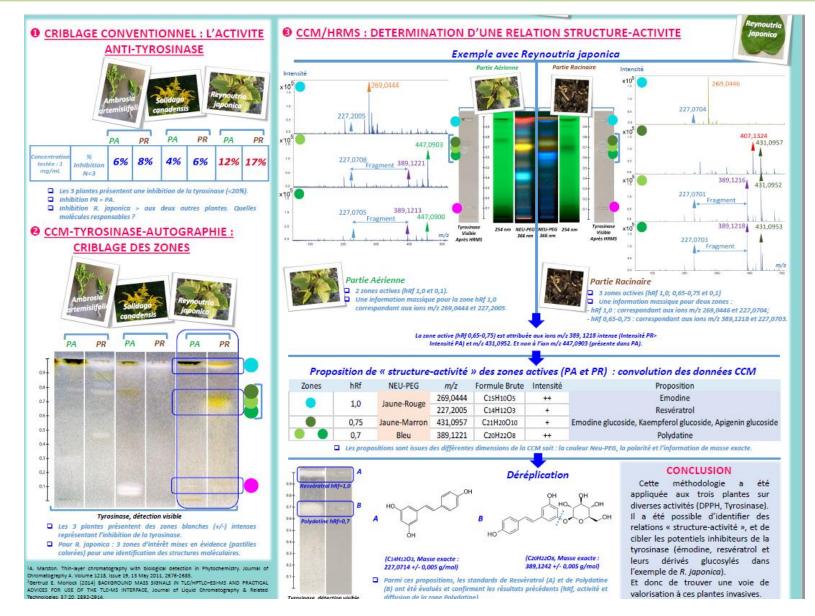
STRATEGIES ANALYTIQUES

- Microwave
- Pressurized liquid extraction
- Supercritical fluid extraction
- Liquid (UHPLC)
- Thin layer (HPTLC)
- Gas (GC)
- Supercritical fluid (SFC)
- Centrifugal Partition (CPC)
- Capillary electrophoresis (CE)

- DPPH, ABTS
- FRAP, CUPRAC
- Tyrosinase
- Elastase
- Collagenase

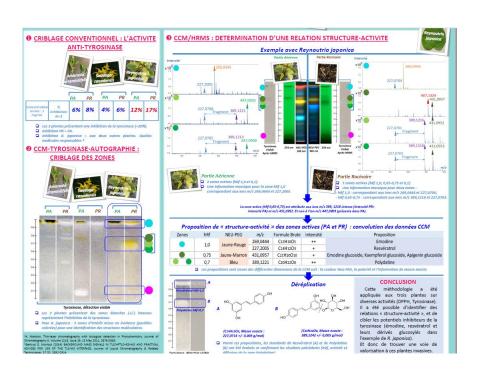
Enzyme immobilisation

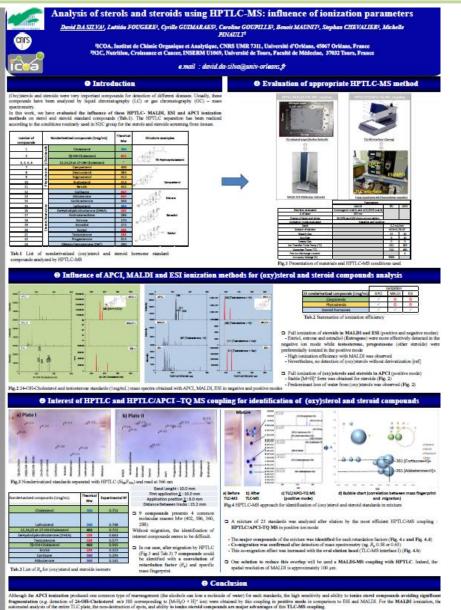
- QTOF-HRMS
- TQ-MS
- MALDI-TOFMS
- ACP
- ACH
- PLS-DA
- Molecular Networking


Exemples de l'apport de la CCM ou TLC

Apport de "l'hyphenation" avant la quantification :

HPTLC@Tyrosinase-ESI-Q-TOFMS





Apport de "l'hyphenation" avant la quantification :

HPTLC-UV-MS

This optimized TLC-MS coupling proves its interest through fast characterization of sterol and steroid in complex extracts.

Apport de "l'hyphenation" avant la quantification :

HPTLC-UV-APCI-TQMS

Fig.4 HPTLC-MS approach for identification of (oxy)sterol and steroid standards in mixture

- ☐ A mixture of 23 standards was analyzed after elution by the most efficient HPTLC-MS coupling : **HPTLC/APCI-TQ MS** in positive ion mode
 - The major compounds of the mixture was identified for each retardation factors (Fig. 4.c and Fig. 4.d)
 - Co-migration was confirmed after detection of mass spectrometry (eg. R_F 0.58 or 0.65)
 - This co-migration effect was increased with the oval elution head (TLC-MS interface I) (Fig. 4.b)
- □ One solution to reduce this overlap will be used a MALDI-MS coupling with HPTLC. Indeed, the spatial resolution of MALDI is approximately 100 μm.

Projet 1

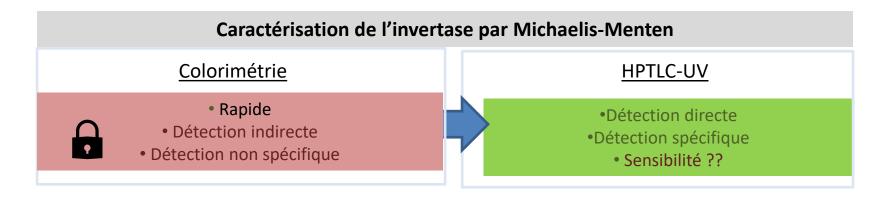
<u>Caractérisation de l'activité enzymatique de l'Invertase et criblage de substrats naturels</u>

Problématique pour nos collègues biochimistes

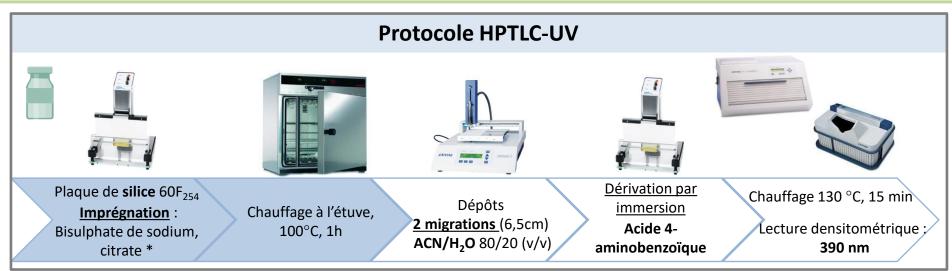
Mise en place d'une approche quantitative par HPTLC-UV

Mise en place d'une approche de criblage TLC-UV-MALDI-MS

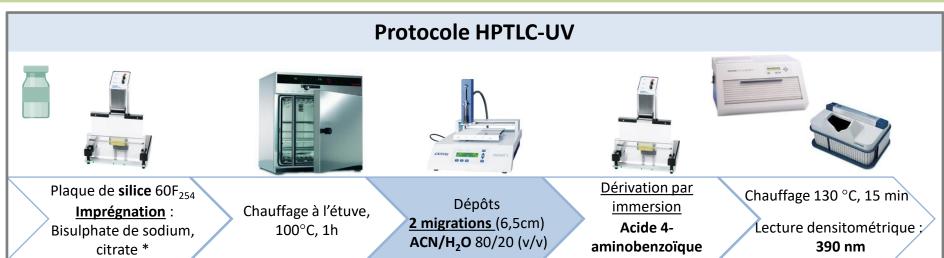
Quantification de l'activité catalytique de l'enzyme Invertase

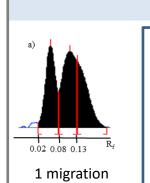


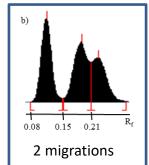
☐ Apport de la chromatographie sur couche mince?

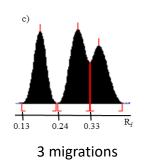

- Enzyme : invertase (8-fructosidase), hydrolyse spécifique du saccharose

Hydrolyse du saccharose par l'invertase CH₂OH CH₂OH *Invertase* HO ĊH₂OH ÒН **Sucrose** Glucose **Fructose** $M = 342,29 \text{ g.mol}^{-1}$ $M = 180,16 \text{ g.mol}^{-1}$ $M = 180,16 \text{ g.mol}^{-1}$ Substrat **Produit Produit**

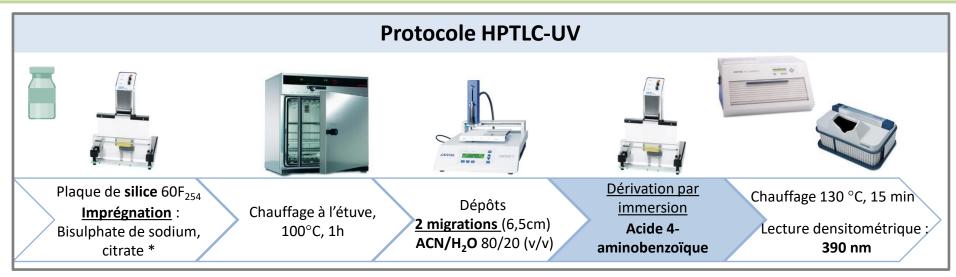



^{*} Ghebregzabher et al. and Fell



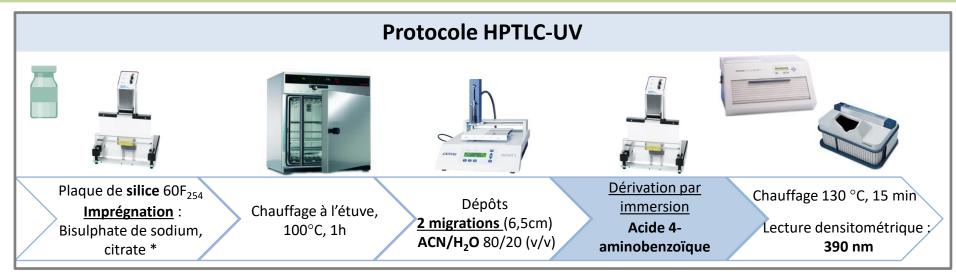


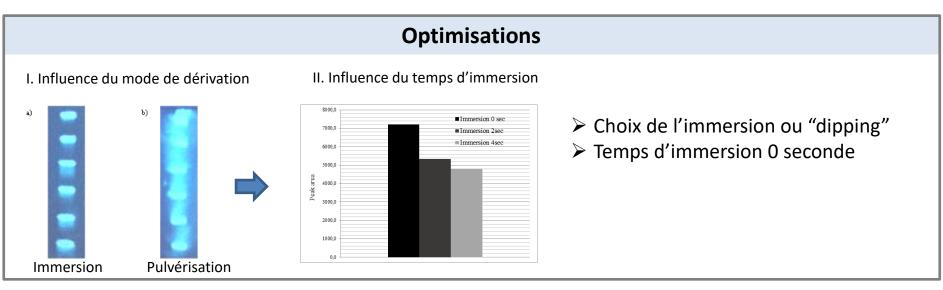
^{*} Ghebregzabher et al. and Fell

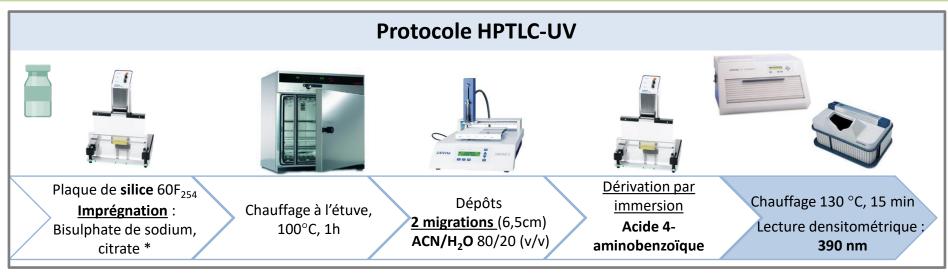


Optimisations

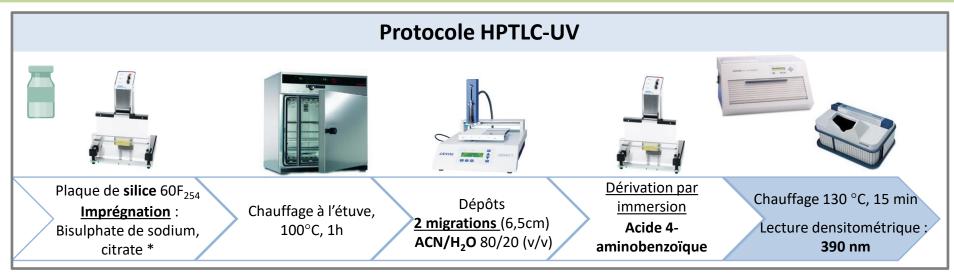
- > Pas de gain avec 3 migrations
- 2 migrations pour un gain de 10 minutes

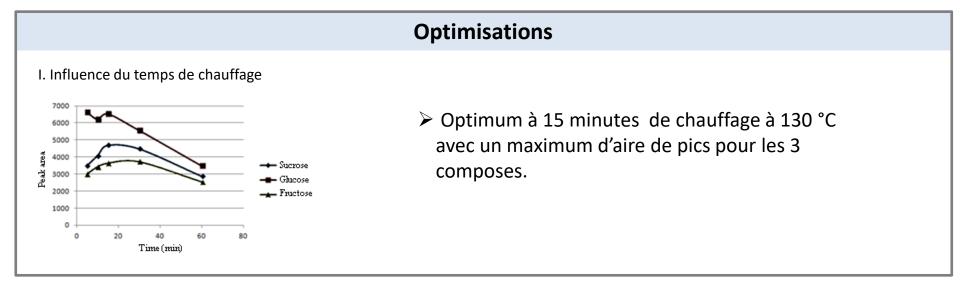



^{*} Ghebregzabher et al. and Fell

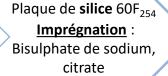


^{*} Ghebregzabher et al. and Fell




^{*} Ghebregzabher et al. and Fell

^{*} Ghebregzabher et al. and Fell



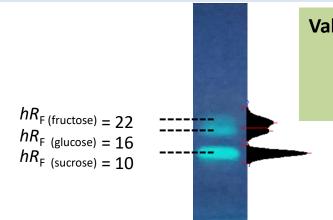
Validation du protocole HPTLC-UV (ICH Q2(R1))

Protocole HPTLC-UV

Chauffage à l'étuve, 100°C, 1h

Dépôts 2 migrations (6,5cm) ACN/H₂O 80/20 (v/v)

<u>Dérivation par</u> <u>immersion</u> **Acide 4**-

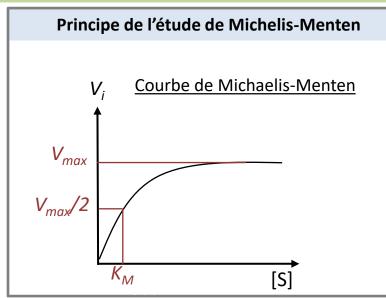

Acide 4aminobenzoïque

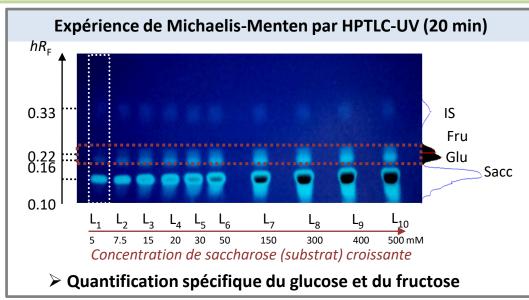
Chauffage 130 °C, 15 min

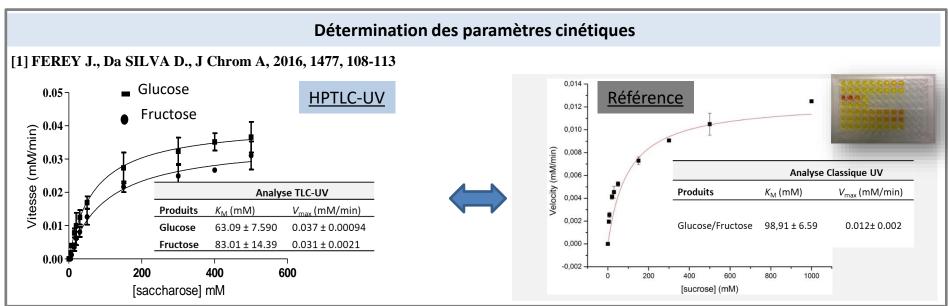
Lecture densitométrique 390 nm

Résultats

Validation de méthode (ICH guidelines Q2(R1))

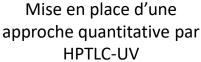

- Spécificité, précision, robustesse, limites de quantification et de détection (RDS <20%)
- LOD 20 ng/spot et LOQ 60 ng/spot
- harmonisation for better healt
- ✓ Séparation suffisante pour une approche quantitative
- √ Faisabilité de la caractérisation enzymatique


[1] FEREY J., Da SILVA D., J Chrom A, 2016, 1477, 108-113



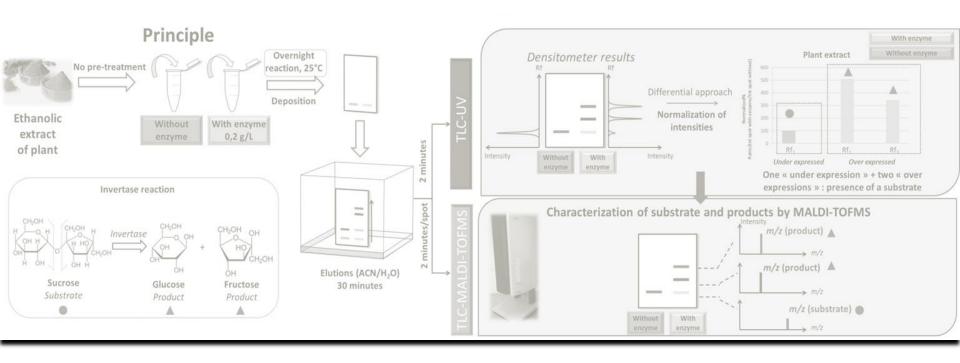
Caractérisation Michaelis-Menten de l'invertase par HPTLC-UV

<u>Caractérisation de l'activité enzymatique de l'Invertase et criblage de substrats naturels</u>



Problématique pour nos collègues biochimistes

ľ



Mise en place d'une approche de criblage HPTLC-UV-MALDI-MS

Criblage de <u>substrats de l'invertase</u> - extraits de plante

Enjeux

HPTLC-UV

- Séparation d'isomères (glucose/fructose)
- Quantification des sucres
- Estimation de sur- et de sous-expressions de tâches
- Dérivation (faibles LD et LQ): analyses de traces

HPTLC-MALDI (choix d'une matrice)

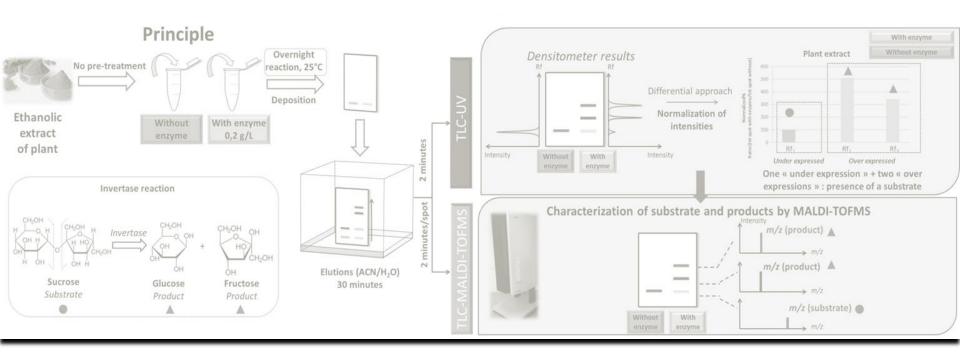
- Résolution spatiale du laser MALDI (10-20 μm)
- •<u>Ionisation de petites molécules</u> (interférences matrice MALDI)
- Compatible à l'analyse TLC-UV non ciblée

Criblage de <u>substrats de l'invertase</u> - extraits de plante

Apport de la HPTLC-UV : Détection rapide de la présence de substrat de l'invertase

Apport du couplage HPTLC-MALDI : empreinte massique du substrat et des produits ?

 $(hR_{\rm F})$


 $(hR_{\rm F})$

 $(hR_{\rm F})$

Criblage de <u>substrats de l'invertase</u> - extraits de plante

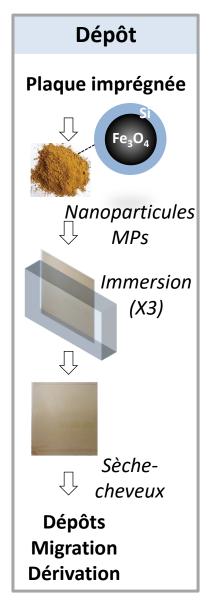
Enjeux

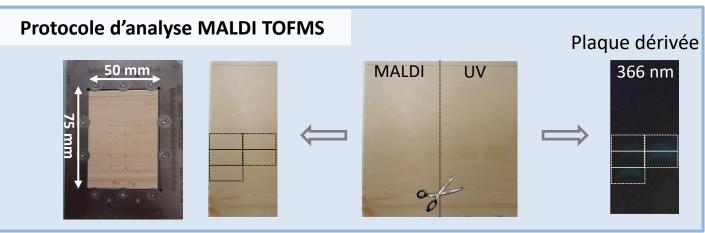
HPTLC-UV

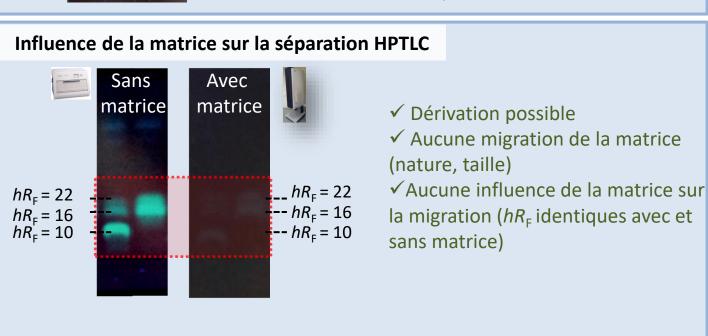
- Séparation d'isomères (glucose/fructose)
- Quantification des sucres
- Estimation de sur- et de sous-expressions de tâches
- Dérivation (faibles LD et LQ): analyses de traces

HPTLC-MALDI (choix d'une matrice)

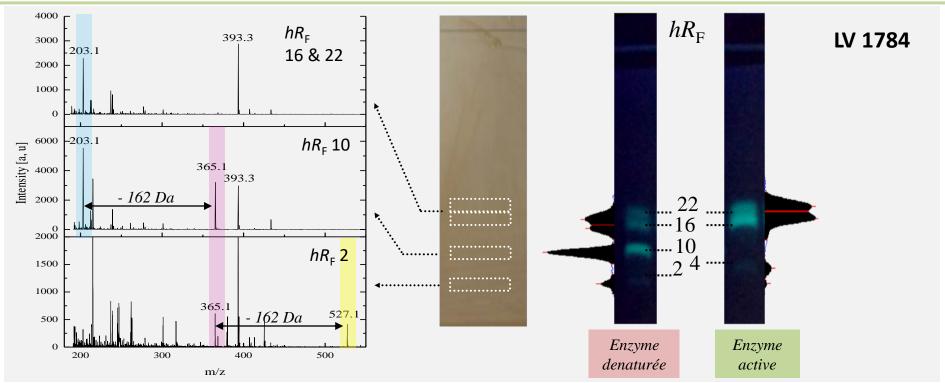
- Résolution spatiale du laser MALDI (10-20 μm)
- •<u>Ionisation de petites molécules</u> (interférences matrice MALDI)
- Compatible à l'analyse TLC-UV non ciblée




Choix de la matrice MALDI : compatibilité avce l'analyse HPTLC-UV ?



<u>Objectif</u>: conservation de la séparation par HPTLC



Identification des substrats: HPTLC-MALDI-TOFMS

Spectres de masse du LV 1784 en mode positif [M+Na]+

FEREY J., Da SILVA D., TALANTA, 2017, 170, 419-424

✓ L'apport de la dimension séparative et de l'information massique a permi de conclure sur :

Zone 2 : raffinose (m/z 527 et fragment)

Zone 4 : lactose (*m/z* 365 sans fragment)

Zone 10 : saccharose (m/z 365 et fragment)

Zone 16 et 24 : glucose/fructose (m/z 203)

Projet 2

Certification de l'origine et la provenance de résines Boswellia et vérification de la qualité et la variabilité des lots

Etude des 4 résines Boswellia

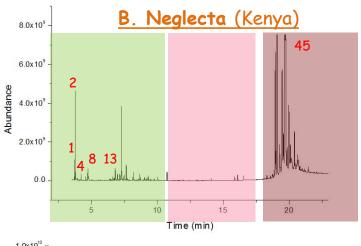
Produits complexes et hétérogènes

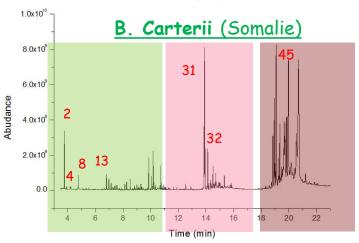
Mise en place d'une approche quantitative par GC-MS (volatils, non volatils)

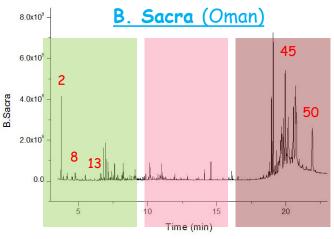
Mise en place d'une approche quantitative des triterpènes HPTLC-UV-MALDI-MS

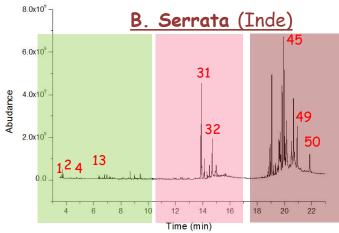
Mono-/ Sesquiterpènes

Diterpènes


Triterpènes




Signatures phytochimiques des Résines Boswellia : CPG-MS



Mono-/ Sesquiterpènes

Diterpènes

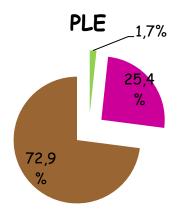
Triterpènes

Identification de 50 composés/marqueurs de la localisation

Signatures phytochimiques/quantification des Résines Boswellia :

CPG-MS

	Composés	B. Neglecta (Kenya)	B. Carterii (Somalie)	B. Sacra (Oman)	B. Serrata (Inde)				
	Monoterpénoïdes and sesquiterpénoïdes								
1	α-thuyène	X			X				
2	α-pinène	×	X	X	×				
4	β-pinène	X	X		X				
8	D-limonène		×	X	×				
13	Verbénol	×			×				
Diterpénoïdes									
31	Incensole		X		X				
32	Serratol		×		×				
Triterpénoïdes									
44	Acide a-boswellique	X	X	X	X				
45	Acide β-boswellique	×	×	X	×				
47	Acide α-acétyl-boswellique		×	X	×				
48	Acide β-acétyl-boswellique		X	X	X				
49	Acide 11-kéto-β-boswellique				X				
50	Acide 3-O-acétyl-11-kéto-β- boswellique			X	X				



Quantification des triterpènes des Résines Boswellia : CPG-MS

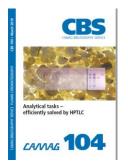
Composés		B. Neglecta (Kenya)	B. Carterii (Somalie)	B. Sacra (Oman)	B. Serrata (Inde)			
Triterpénoïdes								
44	Acide a-boswellique	0.66 ± 0.14	1.08 ± 0.03	0.74 ± 0.03	1.23 ± 0.05			
45	Acide β-boswellique	1.80 ± 0.09	3.09 ± 0.03	1.66 ± 0.12	3.44 ± 0.01			
47								
• •	Acide a-acétyl-boswellique	-	1.56 ± 0.04	1.97 ± 0.03	0.73 ± 0.05			
48	Acide β-acétyl-boswellique	-	4.98 ± 0.03	2.27 ± 0.05	1.73 ± 0.08			
49	Acide 11-kéto-β-boswellique	-	0.33 ± 0.04	0.29 ± 0.08	2.36 ± 0.10			
50	Acide 3-0-acétyl-11-kéto-β- boswellique	-	0.14 ± 0.14	3.66 ± 0.06	1.05 ± 0.16			

Distribution des composés terpèniques (résine Boswellia Serrata)

Mono- /
Sesquiterpènes
Diterpènes
Triterpènes

Screening exhaustif, successif et long pour le contrôle qualité des 4 résines Boswellia (terpéniques)

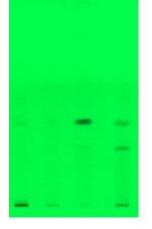
Screening rapide et simultané des 4 résines Boswellia: TLC-UV (Elution: 15 min) 26



Signatures phytochimiques des Résines Boswellia : TLC-UV-MS

Conditions: Plaque gel de silice 60F₂₅₄ sur support aluminium

Extraction par solvant pressurisé (PLE), 3 cycles à 40°C avec le chloroforme et dépôt de 1 µL de l'extrait sur la plaque Dépôt à une vitesse de 4sec/µL avec des bandes de 6mm de largeur à une hauteur de 10 mm et à 10 mm du bord. Espacement de 5 mm entre 2 bandes Phase mobile: Toluène / Acétate d'éthyle / Heptane / Acide formique (8: 2: 1: 0.3, v/v/v/v)


Lecture sous lampe UV à 254 nm

Dépôt de 1µL de solution

Extraction par solvant pressurisé

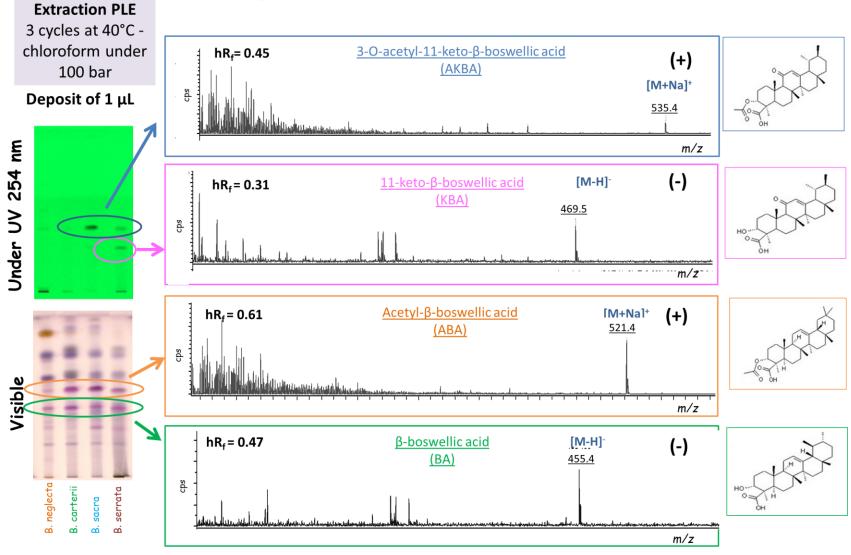

3 cycles à 40°C Chloroforme sous 100 bar

Visible

Plaque MALDI

Révélation au p-anisaldéhyde

Dépôt de la matrice inorganique


Z. Jemmali, D. Da-Silva, E. Destandeau A. Chartier, C. in preparation

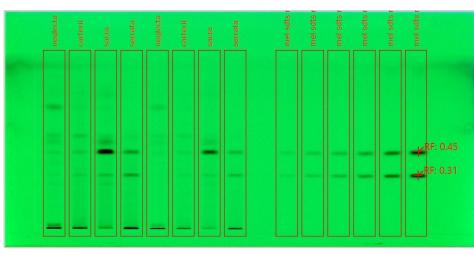
Signatures phytochimiques des Résines Boswellia : TLC-UV-MS

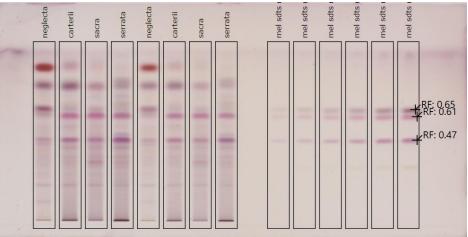
Analyse TLC-MALDI-MS des résines Boswellia

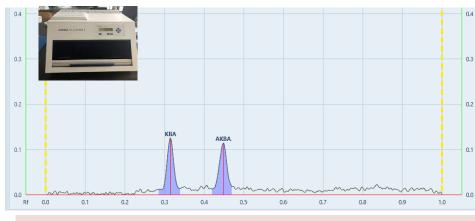
Quantification des triterpènes des Résines Boswellia :

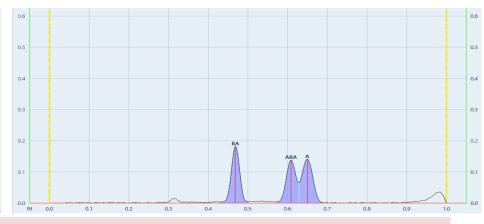
HPTLC-UV

Conditions: Plaque gel de silice 60F₂₅₄ sur support aluminium


Extraction par solvant pressurisé (PLE), 3 cycles à 40°C avec le chloroforme et <u>dépôt de 1 µL</u> de l'extrait sur la plaque Dépôt à une vitesse de 4sec/µL avec des bandes de 6mm de largeur à une hauteur de 10 mm et à 10 mm du bord.


Espacement de 5 mm entre 2 bandes


<u>Phase mobile:</u> Toluène / Acétate d'éthyle / Heptane / Acide formique (8: 2: 1: 0.3, v/v/v/v)


Derivatization; Anisaldéhyde

☐ Approche rapide, visuelle et discriminante des 4 triterpèrnes Boswellic suivis

Quantification des triterpènes des Résines Boswellia :

HPTLC-UV

Concentration en µg/mL

<u>Marqueurs majoritaires</u>	B. Neglecta (Kenya)	B. Carterii (Somalie)	B. Sacra (Oman)	B. Serrata (Inde)
a/β acide boswellique	692,1	1386	1004	1887
a/β acide acétyl-boswellique	916,4	1970	1932	1749
acide 11-kéto-β-boswellique	53,06	110,07	195,6	456,4
acide 3-O-acétyl-11-keto-β- boswellique	136,4	143,2	2258	537,6

Certification de l'origine et la provenance de résines Boswellia et vérification de la qualité et la variabilité des lots

Etude des 4 résines Boswellia

Produits complexes et hétérogènes

Mise en place d'une approche quantitative par GC-MS (volatils, non volatils)

Mise en place d'une approche quantitative des triterpènes **TLC-UV-MALDI-MS**

Diterpènes

Mono- / Sesquiterpènes

Triterpènes

- Quantification avec la même tendance
- Apport de la TLC pour le suivi et CQ des lots

Conclusions: Quantification

Apport du couplage HPTLC-Enzymotaugraphie-MS

- Apport d'une méthode de suivi d'interaction Ligand / enzyme
- Analyse spécifique du spot d'intérêt par HRMS pour une identification en vue d'une quantification d'une composé non connu

Apport de l'HPTLC : Caractérisation de l'activité enzymatique de l'invertase

- Approche HPTLC parfaitement adaptée au suivi cinétique de l'invertase
- ☑ Criblage de substrats de l'invertase par approche différentielle HPTLC-UV et identification par HPTLC-MALDI-TOF MS

Apport de la HPTLC-MS pour une quantification fiable

- Détection ciblée de la signature phytochimique des résines par HPTLC-UV-MALDI-MS
- Certification de l'origine et la provenance de résines Boswellia et vérification de la qualité et la variabilité des lots par une approche orthogonale

Remerciement

L'équipe analytique

Justine Ferey (PhD)
Le Thao Nhi (PhD)
Laetitia Fougère (PhD & IE)
Vanille Quinty (PhD)

Benoît MAUNIT
Cyril COLAS (CBM & ICOA)
Emilie Destandau

La Région Centre

Collaborateurs

Richard DANIELLOU (ICOA)
Pierre LAFITE (ICOA)
Yoan LAURENT (CBM)
Patrick BARIL (CBM)
Eric DARROUZET (IRBI)
Lucie PETIT LESEURRE (CHIMEX)

ARD 2020

Merci à Chromacim, au club CCM et merci à vous pour votre attention.