HPTLC-MS

Overview, quantitation and comparison

Gertrud Morlock, Chair of Food Science

A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543-1551

HPTLC-HRMS (Q Exactive plus)

HPTLC-HRMS (Q Exactive plus)

76

76

1.95E7

6fg04

3.20E5

m/z= 193.08187-193.08992

MS BELOQSIM 6fg04

TIC MS BELOQSIM

0

0

100

200

300

400

500

700

600

HPTLC-HRMS (Q Exactive plus)

1.45E6 TIC MS BELOD6fg0

4.86E4 m/z=

MS BELOD6fg0

193.07653-193.09434

0 [

10

20

30

40

50

60

70

Can we just compare figures like limit of detection (LOD)?

LOD 100 pg/band?

On what does LOD depend on? Application volume, MS analyzer, zone shape

Elution head – cutting edge

Höhe

- 0.2 mm für Standardschichten \rightarrow G. Morlock, W. Schwack, Anal Bioanal Chem 385 (2006) 586 595
- 0.1 mm für extra dünne Schichten \rightarrow U. Jautz, G. Morlock, Anal Bioanal Chem 387 (2007) 1083 1093
- 0.5 mm für preparative Schichten \rightarrow E. Dytkiewitz, G. Morlock, J AOAC Int 91 (2008) 1237 1244

Geometrie

Circular versus oval → U. Jautz, G. Morlock, J Planar Chromatogr 21 (2008) 367 - 371

Elution head – cutting edge

Electrospray ionization (ESI)

MS Eingang (Orifice)

JUSTUS-LIEBIG-

Food Science

Difference of 5 Da?	M + 23 Da Na M - 18 Da H ₂ 0	[M+Na-H ₂ 0] ⁺
No difference in Da?	M + 18 Da NH ₄ M - 18 Da H ₂ 0	[M+NH ₄ -H ₂ 0] ⁺
Difference of 17 Da?	M + 1 Da H M - 18 Da H ₂ 0	[M+H-H ₂ 0] ⁺
Difference of 7 Da?		[M+Li]+
Difference of 39 Da?		[M+K]+
Difference of 45 Da?	M + 46 Da 2 Na M - 1 Da H	[M+2Na-H]+

JLL

Morlock, G.E., Brett, N., J Chromatogr A 1390 (2015) 103-111

Other signals?

J٢

TABLE 1 TLC/HPTLC-ESI-MS Background Mass Signals Obtained in the Negative and Positive Ionization Mode for Various Solvents and Solvent MixturesUsed on HPTLC Silica Gel $60 F_{254}$

	Main Background Mass Signals m/z (Intensity of Base Peak)		
HPTLC-ESI-MS	Negative Ion Mode	Positive Ion Mode	
System signals			
Dimethyl phthalate		$195 [M+H]^+$	
Dibutylphthalate and its potassium adduct		$279 [M+H]^+$ and $317 [M+K]^+$	
Diisooctyl phthalate and its sodium adduct		$391 [M+H]^+$ and $413 [M+Na]^+$	
1-Ethyl-3-methylimidazolium		$111M^{+}$	
Trifluoroacetic acid or formate dimer	113 $[M - H]^{-}$ or $[2M + Na - 2H]^{-}$		
Plate used directly	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5094), 402.8, 544.6	111.2, 391.2, 413.2 (52303), 419.2, 441.2	
Plate pre-washed with neutral solvents and solvent mixtures (all v/v)			
Ethyl acetate	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5704), 402.6, 544.6	164.8, 301.0 (30595), 306.8	
MeOH	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5943), 402.6, 544.6	111.2 (65390)	
MeOH - H ₂ O 1:1	Very low: 255.0 (747)	413.2 (88052), 441.2	
MeOH - H ₂ O 1:3	Very low: 97.0, 119.0, 123.0, 255.2, 281.2 (554), 501.0	391.2, 413.2 (64202)	
MeOH - H ₂ O 3:1	Very low: 97.0 (816), 119.0, 123.0, 255.2, 281.2, 501.0	81.2, 111.2 (27139), 152.2, 301.0	
Plate pre-washed with alkaline and acidic mixtures (all v/v)			
MeOH - NH ₃ 100:1	97.0 and cluster with $\Delta m/z$ 142: 260.8 (4102), 402.6, 544.6	81.2, 111.2 (25.741), 152.2, 301.0	
МеОН - CH ₃ COOH 100:1	Cluster with ∆ <i>m</i> / <i>z</i> 82: 141.0, 223.0, 305.0, 387.0 (12599), 468.8, 550.8, 632.8, 714.8, 796.8	111.2 (80743) and cluster with $\Delta m/z$ 82: 105.0, 187.0, 269.0, 351.0, 432.8, 514.8, 596.8	
MeOH - HCOOH 100:5	 97.0, 119.0 and cluster with Δm/z 68: 181.0, 248.8, 316.8, 328.8, 384.8 (1635), 452.8, 520.8, 588.6, 656.6 	 111.2 (46844), 152.2 and cluster with Δm/z 68: 91.0, 159.0, 227.0, 294.8, 362.8, 430.8, 498.8, 566.8, 634.6 	

Eluted with methanol by TLC-MS Interface; assignments preliminary.

G. Morlock J. Liq. Chromatogr. Relat. Technol. 37 (2014) 2892–2914

TABLE 1 TLC/HPTLC-ESI-MS Background Mass Signals Obtained in the Negative and Positive Ionization Mode for Various Solvents and Solvent MixturesUsed on HPTLC Silica Gel $60 F_{254}$

	Main Background Mass Signals m/z (Intensity of Base Peak)		
HPTLC-ESI-MS	Negative Ion Mode	Positive Ion Mode	
System signals Dimethyl phthalate Dibutylphthalate and its potassium adduct Diisooctyl phthalate and its sodium adduct 1-Ethyl-3-methylimidazolium Trifluoroacetic acid or formate dimer Plate used directly	113 $[M - H]^{-}$ or $[2M + Na-2H]^{-}$ 97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5094), 402.8, 544.6	195 $[M + H]^+$ 279 $[M + H]^+$ and 317 $[M + K]^+$ 391 $[M + H]^+$ and 413 $[M + Na]^+$ 111.2, 391.2, 413.2 (52303), 419.2, 441.2	
Plate pre-washed with neutral solvents and			
Solvent mixtures (all v/v) Ethyl acetate	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5704), 402.6, 544.6	164.8, 301.0 (30595), 306.8	
MeOH	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5943), 402.6, 544.6	111.2 (65390)	
MeOH - H ₂ O 1:1	Very low: 255.0 (747)	413.2 (88052), 441.2	
MeOH - H ₂ O 1:3	Very low: 97.0, 119.0, 123.0, 255.2, 281.2 (554), 501.0	391.2, 413.2 (64202)	
MeOH - H ₂ O 3:1	Very low: 97.0 (816), 119.0, 123.0, 255.2, 281.2, 501.0	81.2, 111.2 (27139), 152.2, 301.0	
Plate pre-washed with alkaline and acidic mixtures (all v/v)			
MeOH - NH ₃ 100:1	97.0 and cluster with $\Delta m/z$ 142: 260.8 (4102), 402.6, 544.6	81.2, 111.2 (25.741), 152.2, 301.0	
МеОН - CH ₃ COOH 100:1	Cluster with Δm/z 82: 141.0, 223.0, 305.0, 387.0 (12599), 468.8, 550.8, 632.8, 714.8, 796.8	111.2 (80743) and cluster with $\Delta m/z$ 82: 105.0, 187.0, 269.0, 351.0, 432.8, 514.8, 596.8	
MeOH - HCOOH 100:5	97.0, 119.0 and cluster with $\Delta m/z$ 68: 181.0, 248.8, 316.8, 328.8, 384.8 (1635), 452.8, 520.8, 588.6, 656.6	 111.2 (46844), 152.2 and cluster with Δ<i>m</i>/<i>z</i> 68: 91.0, 159.0, 227.0, 294.8, 362.8, 430.8, 498.8, 566.8, 634.6 	

Eluted with methanol by TLC-MS Interface; assignments preliminary.

G. Morlock J. Liq. Chromatogr. Relat. Technol. 37 (2014) 2892–2914

Acidic solvents

TABLE 1 TLC/HPTLC-ESI-MS Background Mass Signals Obtained in the Negative and Positive Ionization Mode for Various Solvents and Solvent MixturesUsed on HPTLC Silica Gel $60 F_{254}$

	Main Background Mass Signals m/z (Intensity of Base Peak)			
HPTLC-ESI-MS	Negative Ion Mode	Positive Ion Mode		
System signals				
Dimethyl phthalate		$195 [M + H]^+$		
Dibutylphthalate and its potassium adduct		279 $[M + H]^+$ and 317 $[M + K]^+$		
Diisooctyl phthalate and its sodium adduct		$391 [M+H]^+$ and $413 [M+Na]^+$		
1-Ethyl-3-methylimidazolium		111 M ⁺		
Trifluoroacetic acid or formate dimer	113 $[M - H]^{-}$ or $[2M + Na - 2H]^{-}$			
Plate used directly	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5094), 402.8, 544.6	111.2, 391.2, 413.2 (52303), 419.2, 441.2		
Plate pre-washed with neutral solvents and solvent mixtures (all v/v)				
Ethyl acetate	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5704), 402.6, 544.6	164.8, 301.0 (30595), 306.8		
MeOH	97.0 and cluster with $\Delta m/z$ 142: 119.0, 260.8 (5943), 402.6, 544.6	111.2 (65390)		
MeOH - H ₂ O 1:1	Very low: 255.0 (747)	413.2 (88052), 441.2		
MeOH - H_2O 1:3	Very low: 97.0, 119.0, 123.0, 255.2, 281.2 (554), 501.0	391.2, 413.2 (64202)		
MeOH - H ₂ O 3:1	Very low: 97.0 (816), 119.0, 123.0, 255.2, 281.2, 501.0	81.2, 111.2 (27139), 152.2, 301.0		
Plate pre-washed with alkaline and acidic mixtures (all v/v)				
MeOH - NH ₃ 100:1	97.0 and cluster with $\Delta m/z$ 142: 260.8 (4102), 402.6, 544.6	81.2, 111.2 (25.741), 152.2, 301.0		
MeOH - CH ₃ COOH 100:1	Cluster with Δ <i>m</i> / <i>z</i> 82: 141.0, 223.0, 305.0, 387.0 (12599), 468.8, 550.8, 632.8, 714.8, 796.8	111.2 (80743) and cluster with $\Delta m/z$ 82: 105.0, 187.0, 269.0, 351.0, 432.8, 514.8, 596.8		
MeOH - HCOOH 100:5	97.0, 119.0 and cluster with $\Delta m/z$ 68: 181.0, 248.8, 316.8, 328.8, 384.8 (1635), 452.8, 520.8, 588.6, 656.6	 111.2 (46844), 152.2 and cluster with Δm/z 68: 91.0, 159.0, 227.0, 294.8, 362.8, 430.8, 498.8, 566.8, 634.6 		

Eluted with methanol by TLC-MS Interface; assignments preliminary.

G. Morlock J. Liq. Chromatogr. Relat. Technol. 37 (2014) 2892–2914

Workflow

Data evaluation

- → Structure confirmation
- → Structure elucidation
- → Sum formula

G. Morlock, F. Porbeck, A. Wiesner, I. Klingelhöfer, CBS 110 (2013) 9

JLL

Performance data →TLC-MS Interface

- \rightarrow highly reliable hyphenation
- \rightarrow highly targeted

HPTLC-ESI-MS (SIM, peak area)		Linearity		Precision	
Dyes	<i>hR_F-</i> value	Calibration range (ng/band)	Determination coefficient	Conc. (ng/band)	%RSD, n = 5
Dimethyl Yellow	65	12 – 234	0.9943	1125	8.1
Oracet Red G	50	2 – 39	0.9950	189	11.0
Solvent Blue 35	41	10 - 52	0.9931	750	4.6
Sudan Red G	27	6 – 117	0.9984	564	8.8
Solvent Blue 22	17	21 – 78	0.9976	750	3.8
Oracet Violet 2R	4	8 – 156	0.9752	1500	11.6
Mean			0.9923		8.0

G. Morlock, N. Brett, J Chromatogr A 1390 (2015) 103-111

Analysis of phospholipids in lecithins

S. Krüger, L. Bürmann, G. Morlock, J Agric Food Chem 63 (2015) 2893–2901

JLL

Characterization: soy bean vs. sunflower lecithin GIESSEN

JUSTUS-LIEBIG-

Characterization: soy bean vs. sunflower lecithin GIESSEN

JUSTUS-LIEBIG-

S. Krüger, L. Bürmann, G. Morlock, J Agric Food Chem 63 (2015) 2893–2901

S. Krüger, L. Bürmann, G. Morlock, J Agric Food Chem 63 (2015) 2893–2901

Pressure increase

Integrated online filter

- Substance amount too high: the solubility balance can be reached and nonsoluble, solid particles can block the filter
- Forward sequence and backward sequence let forget the intermediate cleaning step
- \rightarrow Full automatization is the next step

ChromeXtractor

H. Luftmann, Anal Bioanal Chem 378 (2004) 964-968

→ Modification of the elution head for its use on glass plates

A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543-1551

H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) 3772-3776

H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) 3772-3776

Data of validation without IS

- \rightarrow Repeatability (%RSD, n = 6) in matrix: 5.6 %
- \rightarrow Linearity R²: 0.9973

H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) 3772-3776

Sample	Pharmaceutical mean ± SD (mg/tablet)	Energy drink mean ± SD (mg/100 mL)
HPTLC/ESI-MS	102.09 ± 5.76	<mark>32.91 ±</mark> 1.60
RSD (%, n = 6)	(5.6)	(4.9)
HPTLC/UV	101.98 ± 2.30	33.71 ± 0.96
RSD (%, n = 5)	(2.3)	(2.8)
Label	100	32

→ Comparable findings to validated HPTLC/UV methods (F-test, t-test)

Parameter	Precision	Linear Response			
	%RSD	r ²			

Quantification without internal standard

Elution head (autom.)	≤ 5.6 %	0.9973
DESI	≤ 16.8 %	0.95 - 0.98
MALDI	10 %	-
LA-ICP	17 – 41 %	≥ 0.90

Quantification with internal standard

Micro-junction ESI	≤ 4.4 %	0.9999
SALDI/APCI	7 %	0.9991
MALDI	≤ 8.9 %	0.9969
LA-ICP	3 – 40 %	≥ 0.98

DIP-it[®]-DART-MS

JUSTUS-LIEBIG-

Food Science

JLU

E. Chernetsova, G. Morlock, Int J Mass Spectrom 314 (2012) 22-32

ID-CUBE-DART-MS

→ Phenolic compounds of *Bergenia crassifolia* leaves

JLL

E.S. Chernetsova et al. Rapid Commun Mass Spectrom 26 (2012) 1329–1337

60

E. Chernetsova, G. Morlock, Int J Mass Spectrom 314 (2012) 22-32

Time, min

JLU

0

JLU

HPTLC-DART-SVPA-MS

E. Chernetsova, A. Revelsky, G. Morlock, Rapid Commun Mass Spectrom 25 (2011) 2275-2282

Optimization of HPTLC-DART-SVPA-MS

T. Häbe, G. Morlock, Rapid Commun Mass Spectrom 30 (2016) 321–332

JLU

а

JLU

а

b

T. Häbe, G. Morlock, Rapid Commun Mass Spectrom 30 (2016) 321–332

JL

T. Häbe, G. Morlock, Rapid Commun Mass Spectrom 29 (2015) 474–484

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Food Science

JLU

Four separated parabens (each 120 ng/band) detected via densitometry and DART-MS

JLL

JLU Gießen

Food Science

JUSTUS-LIEBIG-

Comparison of the approaches

DART/APGD \rightarrow dry desorption technique $\leftarrow \rightarrow$ DESI

- \rightarrow no plate preparation etc. \leftarrow SALDI, MALDI
- \rightarrow ambient conditions, no high voltage \longleftarrow micro junction
- → simple spectra + MALDI, SIMS
- \rightarrow quantitativ *with* internal standard \rightarrow scan function

MALDI

- strict protocol for plate preparation
- complex spectra
- \checkmark quantitativ with internal standard \rightarrow scan function
- ✓ universally connectable to any LC-MS system given

Elution-head based Interface

- ✓ plug & play interface (without adjustments or modifications)
- ✓ whole plate (no cut)
- ✓ all carriers ând all layers → micro junction
- \checkmark whole zone incl. depth profile \longrightarrow high detectabilities
- ✓ quantitativ without internal standard ↔ desorption techniques
- ✓ targeted recording → cost-effective, but *no* scan function

Comparison of the approaches

- \rightarrow no plate preparation etc. $\leftarrow \rightarrow$ SALDI, MALDI
- \rightarrow ambient conditions, no high voltage \leftarrow micro junction

JUSTUS-LIEBIG-

Food Science

UNIVERSITAT

- → simple spectra + MALDI, SIMS
- \rightarrow quantitativ \rightarrow scanning MS..... discriminative MS

MALDI

- Strict protocol for plate preparation
- complex spectra
- \checkmark quantitativ with internal standard \rightarrow scan function
- ✓ universally connectable to any LC-MS system given

Elution-head based Interface

- ✓ plug & play interface (without adjustments or modifications)
- ✓ whole plate (no cut)
- ✓ all carriers ând all layers → micro junction
- \checkmark whole zone incl. depth profile \longrightarrow high detectabilities
- ✓ quantitativ without internal standard → desorption techniques
- ✓ targeted recording → cost-effective, but *no* scan function

Can we apply DART-MS directly after the bioassay?

Still on the same plate?

Direct Bioautography hyphenated to DART-MS

EICs of 4 separated parabens (each 600 ng/band)

- Signal decay ca. 90% for A. fischeri and 65-81% for pYES
- Sensitivity still sufficient for quantitation

	Signal decay [%]A. fischeripYES							
ME	88	65						
EE	89	67						
PE	90	76						
BE	91	81						

JUSTUS-LIEBIG-

GIESSEN

JLU Gießen

Sample quantitation after direct bioautography

JL

- Mean detemination coefficients of 0.9992
- Mean RSD of 4.6% between both methods.
- Reliable quantitation was possible after direct bioautography on normal and reversed phase layers
 - T. Häbe, G. Morlock, in preparation

		Sa	imple	1	Sample 2				
		ME	EE	PE	ME	EE	PE	BE	
without	NP	103	56	30	165	75	37	65	
BioAssay	RP	97	59	34	147	69	30	67	
A fischari	NP	96	51	27	173	69	24	53	
A. JISCHEH	RP	101	51	27	157	59	27	59	
pYES	RP	111	53	31	170	60	26	62	

JLL

Can we apply DART-MS directly after the bioassay?

Still on the same plate? Yes, seems to work.

... and for elution head-based HPTLC-MS?

H. Luftmann, Anal Bioanal Chem 378 (2004) 964-968 A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543-1551

Directly from bioassay plate?

JUSTUS-LIEBIG-

Food Science

G. Morlock, The Analytical Scientist 27 (2015) 42-43 Taha, M.T., Krawinkel, M.B., Morlock, G.E., J Chromatogr A 1394 (2015) 137-147

G. Morlock, T. Sung, B. Honermeier, in preparation

Mass spectra recorded after detection with bioassay \rightarrow salt adducts are pronounced!

550

600

JLU

S. Krüger, L. Bürmann, G. Morlock, J Agric Food Chem 63 (2015) 2893–2901

JUSTUS-LIEBIG-

Food Science

Bruker Daltonics Application Note MT-101

Quantification?

JLU

Goal: From bioactive zone to sum formula

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Food Science

G. Morlock, in *Instrumental Methods for the Analysis of Bioactive Molecules*, B. S. Patil, G. K. Jayaprakasha, F. Pellati, Eds., ACS Books Publishing, 2014

JLU

HPTLC-ATR FTIR

Anti-inflammatoric compound isolated from Lactobacillus fermentum

E. Dytkiewitz, G. Morlock J AOAC Int 91 (2008) 1237-1244 G. Morlock et al., in preparation

HPTLC-NMR

JUSTUS-LIEBIG-

Food Science

E. Azadniya, G. Morlock, in preparation

GDCh course 335/16

PROGRAMM

Mittwoch, 11. November 2015

.00	Begrüßung	und	Einführung	in	đe	HPTL	С	(Morlock)
-----	-----------	-----	------------	----	----	------	---	-----------

9.45 HPTLC erfahren - Experimente (Häbe, Klingelhöfer)

10.45 Kaffeepause

- Hyphenations in der Planar-Chromatographie Teil 1 (Morlock, Schwack)
- 11.45 Gruppe 1: Experiment DC-HPLC/DAD-ESI MS (Oellig, Schwack) Gruppe 2: Experiment HPTLC-UV/Vis/FLD-MALDI-TOF MS/MS (Lochnit, Krüger)
- 12.30 Gruppe 1: Experiment HPTLC-UV/Vis/FLD-MALDI-TOF MS/MS (Lochnit, Krüger) Gruppe 2: Experiment DC-HPLC/DAD-ESI MS (Oellig, Schwack)

13.15 Mittagspause

13.45 Hyphenations in der Planar-Chromatographie - Teil 2 (Morlock)

14.00 Gruppe 1: Experiment HPTLC-UV/Vis/FLD-ATR FTIR (Klingelhöfer, Gerbig) Gruppe 2: Experiment HPTLC-UV/Vis/FLD-Bioassay-ESI MS (Krüger, Kirchert)

14.45 Gruppe 1: Experiment HPTLC-UV/Vis/FLD-Bioassay-ESI MS (Krüger, Kirchert) Gruppe 2: Experiment HPTLC-UV/Vis/FLD-ATR FTIR (Kingelhöfer, Gerbig)

15.30 Kaffeepause

- 15.45 Hyphenations in der Planar-Chromatographie Teil 3 (Morlock)
- 16.00 Gruppe 1: Experiment HPTLC-UV/Vis/FLD-DART-MS (Häbe, Krüger)
 - Gruppe 2: Experiment HPTLC-UV/Vis/FLD-DESI-MS (Kirchert, Stiefel)
- 16.15 Gruppe 1: Experiment HPTLC-UV/Vis/FLD-DESI-MS (Kirchert, Stiefel)
 - Gruppe 2: Experiment HPTLC-UV/Vis/FLD-DART-MS (Häbe, Krüger)
- 16.30 Diskussion (Morlock)
- 17.00 Voraussichtliches Ende der Veranstaltung

HPTLC-(bio)assay-MS

→ LC-bioassay-MS workflow for 20 samples in parallel within 5 h (15 min per sample)

→ LC-EI-MS workflow for 20 samples in parallel within 2 h (6 min per sample)

JLU

GDCh course 338/16

PROGRAMM

Donnerstag, 12 November 2015

9.00 Begrüßung und Überblick über die wirkungsbezogene Analytik (effect-directed analysis, EDA) unter besonderer Berücksichtigung der planar-chromatographischen Möglichkeiten (Morlock)

Durchführung von Experimenten (in 2 Gruppen parallel à 6-8 Personen)

9.15 Gruppe 1: EDA von antimikrobiell-wirkenden Inhaltsstoffen: Experiment HPTLC-UV/Vis/FLD-Bacillus subtilis-(HPLC-)ESI-HRMS (Jamshidi-Aidj/Stiefel)

Gruppe 2: EDA von estrogenartig-wirkenden Inhaltsstoffen mit dem planar Yeast Estrogen Screen (pYES): Experiment HPTLC-UV/ Vis/FLD-pYES-(HPLC-)ESI-HRMS (Klingelhöfer)

 Gruppe 1: EDA von α/β-Glucosidasehemmer: Experiment HPTLC-UV/Vis/FLD-Enzym-(HPLC-)ESI-HRMS (Jamshidi-Aidj/Kirchert)

> Gruppe 2: EDA von Cholinesterasehemmer: Experiment HPTLC-UV/Vis/FLD-Enzym-(HPLC-)ESI-HRMS (Hage)

- 11.00 Kaffeepause
- 11.15 Fortführung des Bacillus subtilis-Bioassays und der Enzymassays
- 12.00 Mittagessen
- 13.00 pYES-Fortführung
- HPTLC-(HPLC-)ESI-HRMS von bioaktiven Verbindungen (Stiefel, H\u00e4be)
- 14.15 pYES-Fortführung
- 14.45 Kaffeepause
- 15.00 Gruppe 1: EDA von Tyrosinase- und Xanthinoxidasehemmer: Experiment HPTLC-UV/Vis/FLD-Enzym-(HPLC-)ESI-HRMS sowie Experiment HPTLC-UV/Vis/FLD-DPPH*-ESI-HRMS (Hage, Xingmei)

Gruppe 2: EDA von bioaktiven Verbindungen (genereller Hinweis auf Bioaktivität): Experiment HPTLC-UV/Vis/FLD-Aliivibrio fischeri-DART-HRMS (Krüger/Häbe)

- 16.15 Zusammenfassung und Diskussion der unterschiedlichen Bioassays
- 17.00 Voraussichtliches Ende der Veranstaltung

Multivariate data analysis: HPTLC and MS

G.E. Morlock et al. J Chromatogr A 1328 (2014) 104-112

Multivariate data analysis

D. Fichou et al., in preparation

Use the best method for the given task!

Use the best method for the given task!

Analysis of coumarin

5 different cinnamom spice samples containing coumarin

JLU

Analysis of coumarin

9 different food samples containing coumarin

www.wikipedia.de

www.colourbox.de

www.deutsche-wirtschafts-nachrichten.de

JLU

Sample	Manufacturer	Coumarin (mg/kg)	Repeatabilities <i>(%RSD</i> , <i>n</i> =2)	Reproducibility (%RSD, n=2)
Spice	Sonnentor - gemahlen	3732	0.4/1.2	1.0
	Lidl Kania - gemahlen	1615	0.4/0.3	2.4
Теа	YogiTea - Frauenpower	19	1.4/3.2	4.5
	TeeGeschwendner – Kaminfeuer	22	3.3/2.0	0.5
Cereals	Aldi Knusperone - Zimt Chips	1	3.8/5.9	0.4
Cinnamon bun	IKEA - Kanelbullar	16	1.4/4.5	6.6
Jam	Grafschafter Konfitüre – Winterzauber	4	1.6/1.6	1.6

Confirmation by HPTLC-ESI-MS

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Food Science

Milk, biscuit, chocolate, cola, bonbons, energy/sport drinks

G. Morlock, M. Vega, J Planar Chromatogr 20 (2007) 411-417

JLL

JUSTUS-LIEBIG-

GIESSEN

G. Morlock, M. Vega, J Planar Chromatogr 20 (2007) 411-417

JLL

Facts for sucralose analysis

 High throughput (46 runs in 15 min by (anti-)parallel development, 15 min-staggered offline system) → 1000 runs/8h-day JUSTUS-LIEBIG-

Food Science

JNIVERSITAT

- Resulting in 20-s runs with 330 µL solvent consumption
- Almost no disposal costs < 0.01 Cent/run
- Selective derivatization \rightarrow compensates low separation power
- Reduced sample preparation: no SPE
- Analysis without acetonitrile!

- Ultra-rapid HPLC with 2 min gradient: 720 runs/24-h day
- Sample preparation: Need of SPE for MS or ELSD as detector

...not to end like this

JUSTUS-LIEBIG-

T. Häbe, G. Morlock, J Chromatogr A 1413 (2015) 127–134

JLU

