Hyphenations in HPTLC – HPTLC-MS and EDA applications

T Justus Liebig University of Gießen

J

JL

Anthocyanes in feed, pomace, juice and wine

Study life Explore the world

S. Krüger, O. Urmann, G. Morlock, J Chromatogr A 1289 (2013) 105-118

Anthocyanes in feed, pomace, juice and wine

JLU Gießen Food Science G. Morlock

JLL

Mass spectra of anthocyanins

m/2 900

Effect-directed link to the compound

Radical scavenging property

Vibrio fischeri bioactivity

Powdered berry samples

JLU

JLL

Quantitation of tanshinons in Chinese salvia

JL

Confirmation by MS and method comparison

JUSTUS-LIEBIG-

Food Science

Bioactivity of single compounds

203.0

308.0

dom to

800.8

100.0

Wavekergit (are)

6.6

inter it

J

G. Morlock, T. Sung, B. Honermeier, in preparation

Mass spectra recorded after detection with bioassay \rightarrow salt adducts are pronounced!

Fingerprint of phenolic compounds in propolis

Selective derivatizations

Fast characterization of samples by HPTLC

Native fluorescent zones (366 nm)

Lipophilic zones \rightarrow Flavonoids \rightarrow Flavonoids \rightarrow Flavonoids \rightarrow Neu/PEG (366 nm) berberine (366 nm) $AICI_3$ (366 nm) Neu (366 nm) St St St St 2 2 2 Amino acids \rightarrow Phenolics \rightarrow Sugars \rightarrow Antioxidatives \rightarrow DPA DPPH* Ninhydrin Fast blue salt St St 2 St 2

Fingerprint of phenolic compounds in propolis

- → Screening of >100 samples showed characteristic marker compounds
- \rightarrow Mainly 2 types of German propolis

Study life Explore the world G. Morlock et al., in preparation

Cooperation with Wala and Apicultural State Institute, Stuttgart

Plant origin of O-type?

Confirmation of marker compounds by MS

EIC of DART-MS

JUSTUS-LIEBIG-Real UNIVERSITAT GIESSEN

Food Science

Study life

JLL

Analysis of biopolymers \rightarrow monomeric units

Xan

Starch Mix 1 Mix 2 CMC Kara Pect Cell HPMC

Mix 1 Mix 2 Study life

Carr JBKM

Mix 1

Explore the world

G. Morlock, F. Gamlich, J Planar Chromatogr 25 (2012) 244-250

JL

Study life Explore the world

G. Morlock, D. Schick, W. Schwack, in preparation

Carrageen

Analysis of Ocimum basilicum \rightarrow use in TCM

Sucralose in milk-based confection (Burfi)

/extracted in MeOH, filtered

Study life Explore the world G. Morlock, S. Prabha, *J Agric Food Chem* 55 (2007) 7217-7223

... in further matrices

Milk, biscuit, chocolate, cola, bonbons, energy/sport drinks

Sample preparation and chromatography

JUSTUS-LIEBIG-

GIESSEN

G. Morlock, M. Vega, J Planar Chromatogr 20 (2007) 411-417

Problems associated with column-based hyphenations

- Capital cost and strategies for dealing with large amounts of data
- Complexity of instrumentation increases \rightarrow difficult to operate in routine
- A single eluent (\rightarrow optimal for all detectors) is difficult to obtain.
- Differences in sensitivity are challenging.

Less challenging in HPTLC-based hyphenations

- Open system is highly adaptive to different sensitivities
- Cost-effective by modular instrumentation
- Generating less data due to targeted access to points-of-care
- Directly accessible for the respective optimal solvent

Hyphenation

HPLC: sample in solvent; after separation \rightarrow sample in waste HPTLC: solvent evaporated; after separation \rightarrow sample on plate

Journal of Chromatography A, 1217 (2010) 6600-6609

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/chroma

Review

Hyphenations in planar chromatography

Gertrud Morlock*, Wolfgang Schwack

University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70599 Stuttgart, Germany

ARTICLE INFO

Article history: Available online 20 May 2010

Keywords: Mass spectrometry High-performance thin-layer chromatography Effect-directed analysis Bioassays Cost-effective analysis High-throughput system

ABSTRACT

This review is focused on planar chromatography and especially on its most important subcategory highperformance thin-layer chromatography (HPTLC). The image-giving format of the open, planar stationary phase and the post-chromatographic evaporation of the mobile phase ease the performance of various kinds of hyphenations and even super-hyphenations. Examples in the field of natural product search, food and lipid analysis are demonstrated, which point out the hyphenation with effect-directed analysis (EDA) and mass spectrometry and illustrate the efficiency gain. Depending on the task at hand, hyphenations can readily be selected as required to reach the relevant information about the sample, and at the same time, information is obtained for many samples in parallel. The flexibility and the unrivalled features through the planar format valuably assist separation scientists,

• HPTLC-UV/Vis/FLD-MS [13,14],

• HPTLC-UV/Vis/FLD-FTIR ATR [18],

• HPTLC-UV-FTIR [16,17],

• TLC-Vis-SERS [12].

• HPTLC-UV/Vis/FLD-bioactivity-HRMS [15],

© 2010 Elsevier B.V. All rights reserved,

JUSTUS-LIEBIG-

GIESSEN

JLL

s	HPLC-MS
esorption-ba	sed approaches
Atom bombard	The formation (fast atom bombardment)
Ion bombardme	ent SIMS (secondary ion MS) Kushi/Handa 1985
	α (α : α : α : α : α : α : α : α : α :
	LD-CI (laser desporption chemical ionization)
	MALDI (matrix-assisted laser desorption/ionization) Gusev/Hercules et al. 1995
	SALDI (surface-assisted laser desorption/ionization) Chen/Shiea/Sunner 1998
Laser light bear	n ELDI (electrospray-assisted laser desorption/ionization) Lin/Shiea et al. 2007
	LA-ICP (laser ablation inductively coupled plasma mass spectrometry)
	LIAD (laser-induced acoustic desorption electrospray ionization mass spectrometry)
Spray beam	DESI (desorption electrospray ionization)
Spray beam	EASI (easy ambient sonic-spray ionization mass spectrometry)
	, (a)
Excited day bo	FA-APGD (flowing afterglow-atmospheric pressure glow discharge)
Excited gas be	DART (direct analysis in real time) Morlock/Ueda 2007

Elution head-based \rightarrow TLC-MS Interface

Study life Explore the world H. Luftmann, Anal Bioanal Chem 378 (2004) 964-968 A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543-1551

Scheme of operation

Data Evaluation for structural confirmation or impurity control or search for sum formula

New HPTLC-MS system setup

Performance data of expression CMS

JUSTUS-LIEBIG-

Food Science

G. Morlock, F. Porbeck, A. Wiesner, I. Klingelhöfer, CBS 110 (2013) 9

JL

ESI⁺ MS full scan

Study life Explore the world

Elution head-based HPTLC-MS

4 mm

2 mm

4 mm

4 mn

G. Morlock, CBS 103 (2009) 16

Study life Explore the world

JL

453 114

1. Hilling to be allow

and can different

200

380

JUSTUS-LIEBIG-

Detectability by HPTLC-ESI-MS/MS

JUSTUS-LIEBIG-

GIESSEN

 \rightarrow LOQ better than 20 pg/zone harman (S/N 20)

 \rightarrow Detectability comparable to HPLC/MS

U. Jautz, G. Morlock, J Chromatogr A 58 (2006) 244-250

JUSTUS-LIEBIG-

Food Science

** **

Bruker Daltonics, Application Note MT-101

JLU Gießen Food Science G. Morlock

J

Quantitative?

JLL

HPTLC-DART-SVPA-MS

Repeated horizontal scanning?

JUSTUS-LIEBIG-

Food Science

JLU Gießen Food Science G. Morlock

Explore the world

G. Morlock et al., in preparation

HPTLC-NMR

\rightarrow hyphenation of HPTLC with ¹H-NMR via TLC-MS Interface

Study life Explore the world

A. Gössi, U. Scherer, G. Schlotterbeck, Chimia 66 (2012) 347

Bioactive compounds in *Basidomycetes*

Study life Explore the world

T. Shen, H. Zorn, G. Morlock, in preparation

Detection of hormones

Planar yeast estrogen screen (p-YES)

- \rightarrow detectability down to 1 pg/zone
- → using the human estrogen receptor expressed in Saccharomyces cerevisiae yeast cells
- \rightarrow blue fluorescent zones (4-Methylumbelliferon)

I. Klingelhöfer, G. Morlock, in preparation

Study life Explore the world

E. J. Routledge, J. P. Sumpter, Environ. Toxicol. Chem. 15 (1996) 241

Detection of esterase inhibitors

Cholinesterase inhibiting pesticides by esterases

- \rightarrow detectability down to 2 pg/zone
- → using an esterase and substrate (1-naphthylacetate/fast blue salt B) solution

6

5

 \rightarrow white zones on a pink background

2

3

1. Paraoxon-methyl, 2. malaoxon, 3. paraoxon, 4. ethiofencarb, 5. chlorfenvinfos, 6. dichlorvos

R. Akkad, W. Schwack, J Planar Chromatogr 21 (2008) 411-415

Detection of antibiotics with Bacillus subtilis

JUSTUS-LIEBIG-

Food Science

UNIVERSITAT

Antibiotics in milk extracts

- → dipping in *Bacillus subtilis* bacteria suspension and incubation
- \rightarrow dipping in tetrazolium salt as substrate
- \rightarrow white zones on a pink background

I. Choma et al., CAMAG Bibliogr Service CBS 106 (2011) 1-4

Effect-directed analysis by HPTLC-Bioactivity-HRMS

✓ Matrix-robust

 \rightarrow combination of different methods (SPE, GPC, prep. HPLC) for fractionation, isolation and purification of substances, always followed by bioactivity testing, can be skipped

✓ Parallel

 \rightarrow 30 extracts separated in parallel under identical chromatographic and environmental conditions

- Effect-directed detection
 - \rightarrow bioassays not interfered by solvents
- ✓ Modular
 - \rightarrow targeted coupling with HRMS \rightarrow very cost-effective
- Image/derivatizations
 - \rightarrow additional helpful information

New GDCh course 335/13

Study life Explore the world

JL

www.hptlc.com

International Symposium for HPTLC BASEL Switzerland 06-08 July 2011

This symposium informs scientists and students about the immense potential of High-Performance Thin-Layer Chromatography and its latest developments.

www.hptlc.com

Highlights of the Symposium • Well known speakers • Pranticpation of leading scientifis in HPTLC from all over the world • Presentation of many interesting posters • Panel discussions with Kymote Speakers • Sciulave tour around the new Campus under the expert stewardship of Novartis Guides • Social work

Deadlines • Abstract submission (oral and poster): 1 March 2011 • Final registration: 30 May 2011 Location Congress Center Basel, new Novartis Campus Basel

e includes the full scientific program. Local Organization (

International Symposium

High-Performance Thin-Layer Chromatography

LYON, 02nd - 04th July 2014

JLL

Merck Millipore CAMAG/Chromacim Advion

IonSense/KR Analytical

Database support for analysts

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Detection with chloroplasts (spinach)

JUSTUS-LIEBIG-

GIESSEN

Study life Explore the world K. Burger, Bayer AG, Dormagen