Solvents and solvent selection for chromatography

Prof. Colin F. Poole Department of Chemistry Wayne State University USA

Solvent Polarity

- General qualitative understanding
- No universal definition
 - Capacity of a solvent to enter into all possible intermolecular interactions
 - Solvents ability to participate in interactions of a dipole type
- Numerous single-property scales
 - Dielectric constant
 - Reichardt's solvatochromic absorption scale

Solvent Polarity

Scales in use are unfit for purpose

- No single reference compound or bulk physical property that is uniquely polar
- Each scale measures some specific characteristic of the selected probe or physical property
- Scales set up to measure polarity are internally inconsistent
- No reason to prefer one scale over another

Separation Science Approach

- Semi-empirical scales that classify solvents according to their:
 - Solvent Strength
 - Solvent Selectivity

Solvent Strength

Single parameter estimate of a solvent's ability to cause migration in a chromatographic system

- Not a fundamental solvent property since it depends on the system
- Determined by experiment

Solvent selectivity

- The parameter that distinguished the ability of a solvent to provide separation as well as migration
 - Determined by the solvent's capability to enter into specific intermolecular interactions
 - Dispersion
 - Orientation
 - Induction
 - Hydrogen bonding

Methods for solvent selectivity characterization

Solubility parameters

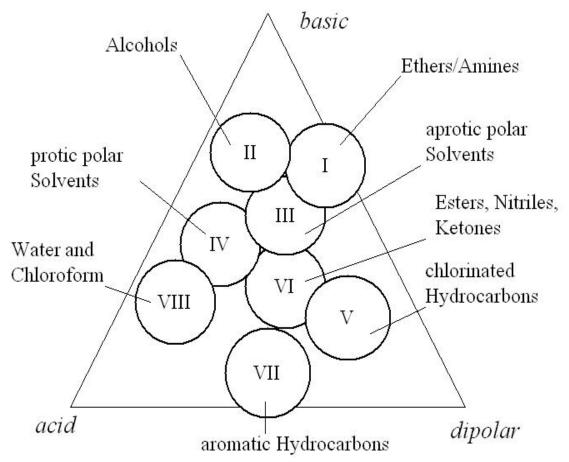
No general agreement on how to calculate partial polar solubility parameters

Solvent triangle classification

- Each intermolecular interaction associated with a single prototypical solute
- Solvatochromic parameters
 - Considers only the polar interactions of a solvent and not its cohesive energy

Solvent Selectivity Triangle

Selection of prototypical solutes


- Nitromethane dipole-type interactions
- Ethanol hydrogen-bond base
- Dioxane hydrogen-bond acid
- Solvents classified based on their interactions (gas-liquid partition coefficients) with the three prototypical solutes

Solvent Selectivity Triangle

Partition coefficients semi-empirically corrected

- Solute size differences
- Polarizability differences
- Differences in dispersion interactions
- Adjusted so that the n-alkanes are the zero point for each interaction

Solvent selectivity triangle

A.R. Johnson, M.F. Vitha, J. Chromatogr. A 1218 (2011) 556-586

Prototypical Solutes

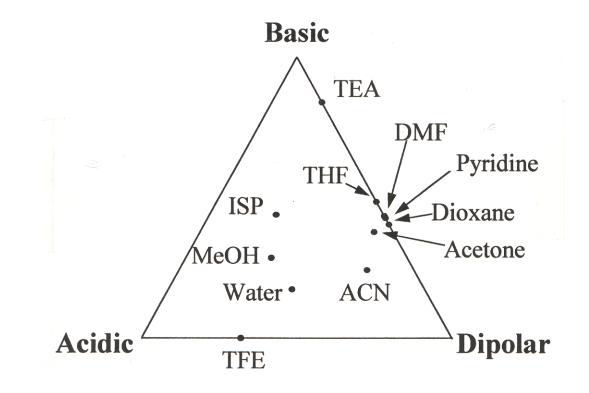
Polar solutes with a single dominant intermolecular interaction are virtually unknown

All solutes that are hydrogen bonding are simultaneously dipolar

- Ethanol Nitromethane Dioxane S = 0.42
 - S = 0.95
 - A = 0.06

A = 0.37

B = 0.38


B = 0.31

- S = 0.75
- $\mathsf{A} = \mathsf{0}$
- B = 0.64

Solvatochromic Selectivity Triangle

- Spectroscopic measurement of solvent effects on absorption bands for select solutes
- Each parameter is an average for several solutes and roughly independent of solute identity
 - $\pi^* = dipolarity/polarizability$
 - Normalized to DMSO = 1
 - a = hydrogen-bond acidity
 - Normalized to methanol = 1
 - β = hydrogen-bond basicity
 - Normalized to hexamethylphosphoramide = 1

Solvatochromic Selectivity Triangle

Cavity Formation — Reorganization — Solute-Solvent Interactions S S

Contains a term to accommodate cavity formation

(differences in cohesive energy of solvents)

Assigns general properties to solutes based on their capability for simultaneous multiple interactions

- Dispersion
- Dipole-type (orientation and induction)
- Hydrogen bonding (donor and acceptor properties)

System constants relating to properties of the solvent

SP = C + e.E + a.A + b.B + s.S + I.L

Descriptors relating to solute properties

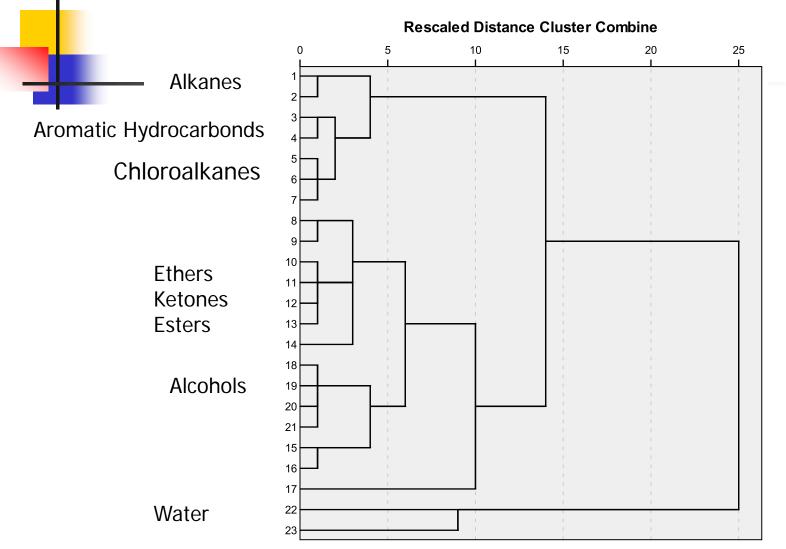
SP = free energy related property

Solute descriptors

- V is McGowan's Characteristic Volume
- E is the excess molar refraction
- S is the solute dipolarity/polarizability
- A is the effective solute hydrogen-bond acidity
- B is the effective solute hydrogen-bond basicity
- L is the gas-liquid partition coefficient at 25°C with hexadecane as a solvent

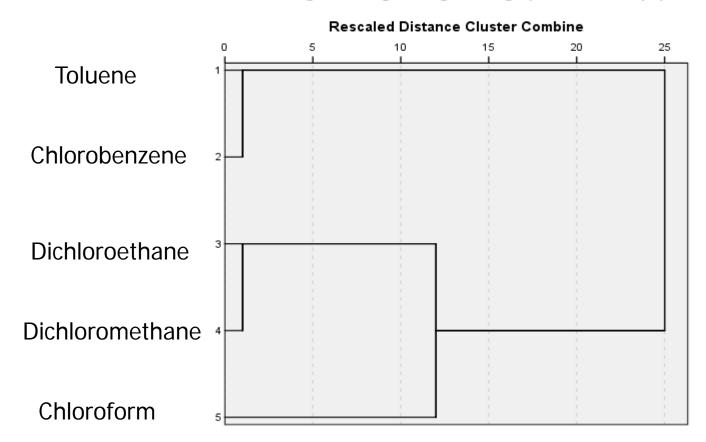
C.F. Poole, S.N. Atapattu, S.K. Poole, A.K. Bell, Anal. Chim. Acta 652 (2009) 32-53.

Solute Descriptor	Free Energy Contribution
L	<i>Ease of cavity formation</i> (solvent-solvent interactions) <i>Dispersion interactions</i> (solute-solvent interactions)
Ε	Electron lone pair interactions
S	Dipole-type interactions
Α	Solvent hydrogen-bond base-solute hydrogen-bond acid interactions
В	Solvent hydrogen-bond acid-solute hydrogen-bond base interactions
	Descriptor L S A

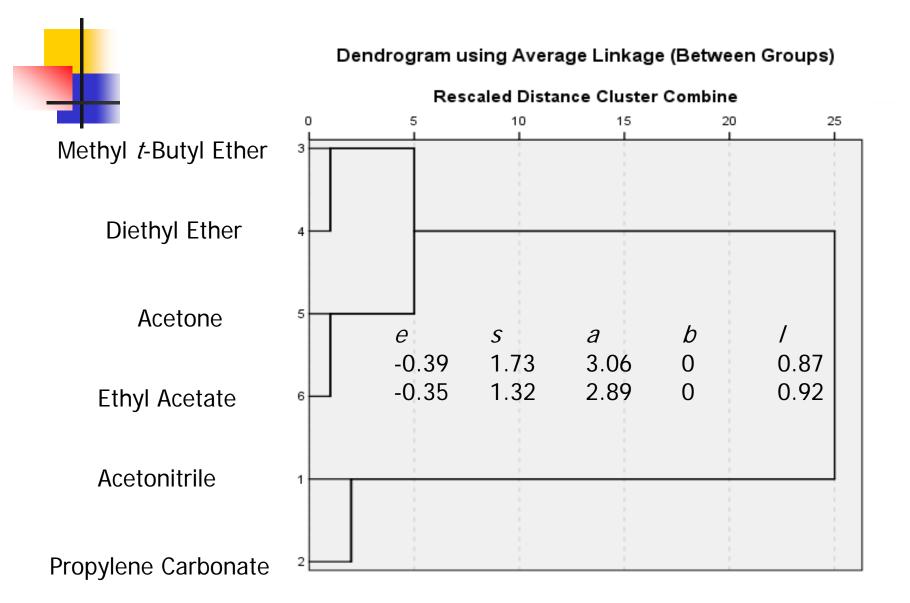

Solvent Properties

Transfer of solutes from the gas phase to a solvent is defined by 5 system constants

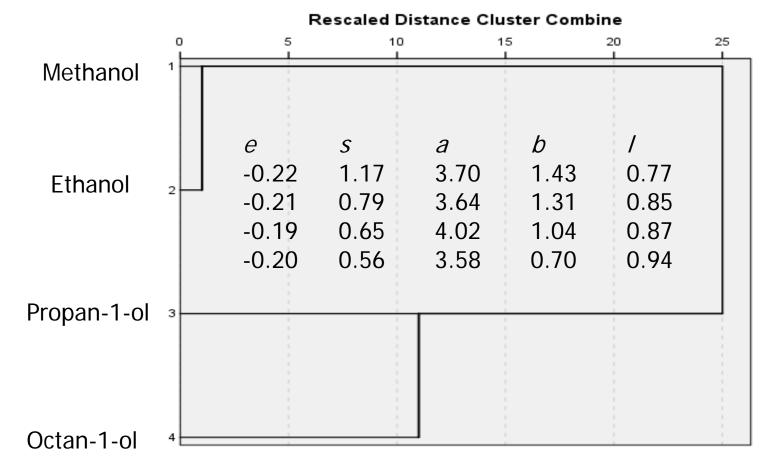
- The system constants are independent of solute identity
- System constants are calculated from the experimental properties of a number of varied compounds
- Data requirements established by statistical parameters


Solvent Properties						
Solvent	System constants					
	е	5	а	b	/	
N-Heptane	-0.16	0	0	0	0.98	
Chloroform	-0.59	1.26	0.28	1.37	0.98	
Acetone	-0.39	1.73	3.06	0	0.87	
Methanol	-0.22	1.17	3.70	1.43	0.77	
Trifluoroethanol	-0.61	1.46	1.90	4.46	0.63	
Water	0.82	2.74	3.90	4.81	-0.21	

_

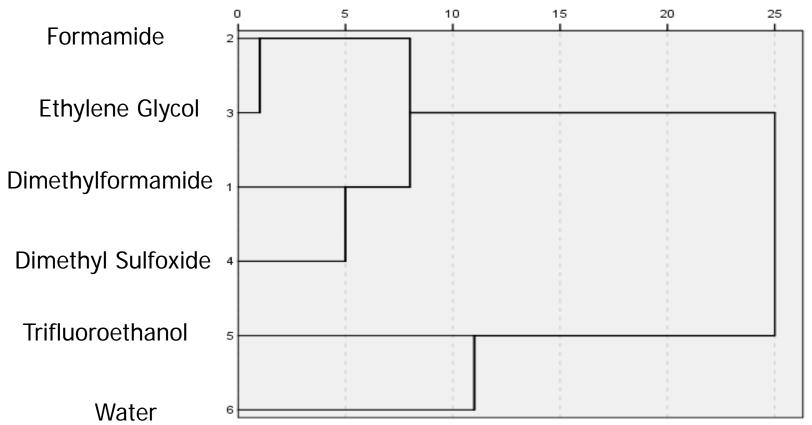


Dendrogram using Average Linkage (Between Groups)



Group 2

n-Alcohols


Dendrogram using Average Linkage (Between Groups)

Solvents behaving independently

Dendrogram using Average Linkage (Between Groups)

Rescaled Distance Cluster Combine

Solvents behaving independently

Solvent	System constants				
	e	S	а	b	/
Dimethylformamide	-0.87	2.11	3.77	0	1.01
Formamide	0.31	2.29	4.13	1.93	0.44
Ethylene Glycol	0.13	1.66	4.46	2.36	0.57
Dimethyl sulfoxide	0.13	2.81	5.47	0	0.73
Trifluoroethanol	-0.61	1.46	1.90	4.46	0.63
Water	0.82	2.74	3.90	4.81	-0.21

Solvent selection for method development in thin-layer chromatography

- n-Heptane
- Toluene
- Dichloromethane
- Chloroform
- Methyl *t*-Butyl Ether
- Acetone
- Acetonitrile

- Methanol
- Propan-1-ol
- Formamide
- Dimethylformamide
- Trifluoroethanol
- Water

Strength Adjusting Solvent

- Normal-Phase Chromatography
 - Weak and Moderately Polar Compounds
 - n-Heptane
 - Polar Compounds
 - Strongest solvent that fails to migrate sample
 - Facilitates incorporation of solvents immiscible with n-Heptane
- Reversed-Phase Chromatography
 - Always water

Solvent Strength Parameter ϵ°

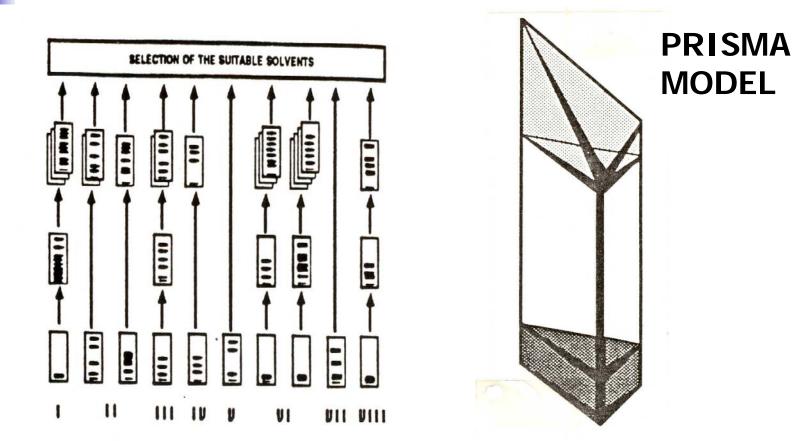
- Solvent strength of a pure solvent can be defined by ε° for any adsorbent
- Free energy of adsorption of the solvent per unit surface area with pentane assigned as the zero reference
- Organization of solvents in ascending order of ε° is known as an eluotropic series

Inorganic Oxides

- Solvent strength parameter for silica gel ϵ° =-0.264V + 0.199S +0.384A +0.355B + 0.272
- Can be used to estimate ε° values to about 0.04 units for solvents lacking experimental values
- Silica gel retains solutes primarily through hydrogen-bonding and to a lesser extent dipoletype interactions

Inorganic Oxides

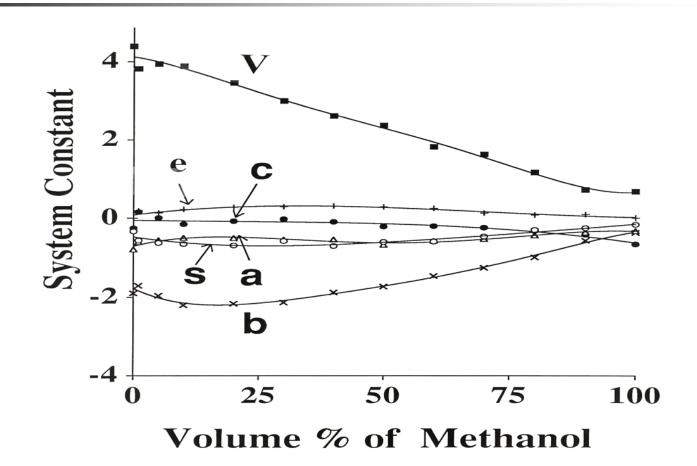
Solvent strength parameter for alumina ϵ° =-0.226V + 0.359S +0.938A +0.475B + 0.230

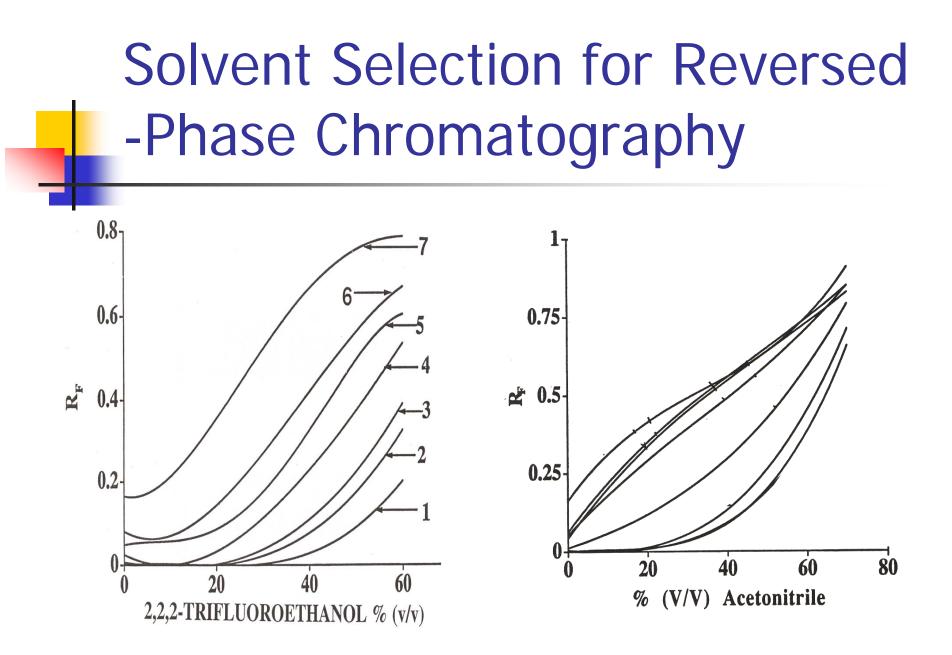

- Significantly more hydrogen-bond basic and dipolar/polarizable than silica gel
- Less hydrogen-bond acidic than silica gel

S. K. Poole and C. F. Poole, Chromatographia 53 (2001) S-162-166

Eluotropic series for silica gel

<u>Solvent</u>	° <u>3</u>	<u>Solvent</u>	<u>°3</u>
n-Heptane	-0.02	Formamide	0.55
Toluene	0.22	Propan-1-ol	0.60
Chloroform	0.26	Trifluoroethanol	0.62
Methyl t-butyl ether	0.29	Methanol	0.70
Dichloromethane	0.30	Water	0.72
Acetonitrile	0.52		
Acetone	0.53	each $CH_2 =$	-0.05
Dimethylformamide	0.51		


Solvent Selection for Normal-Phase Chromatography



Screen solvents from different selectivity groups

Optimize selected solvents

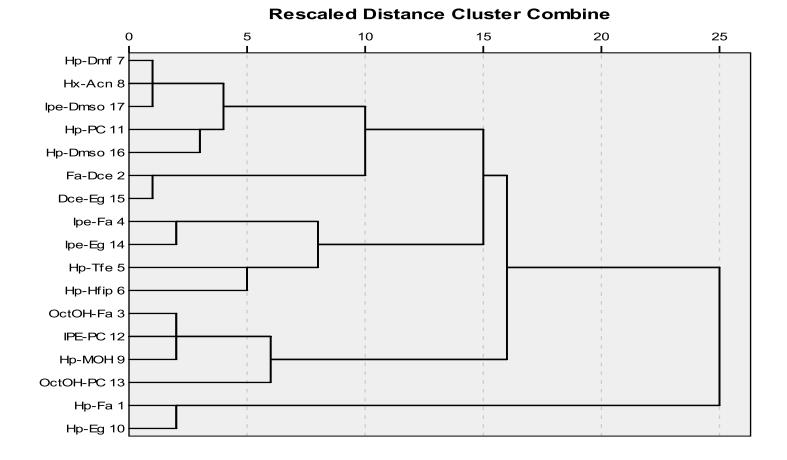
System Maps used to Model Reversed-Phase Separations

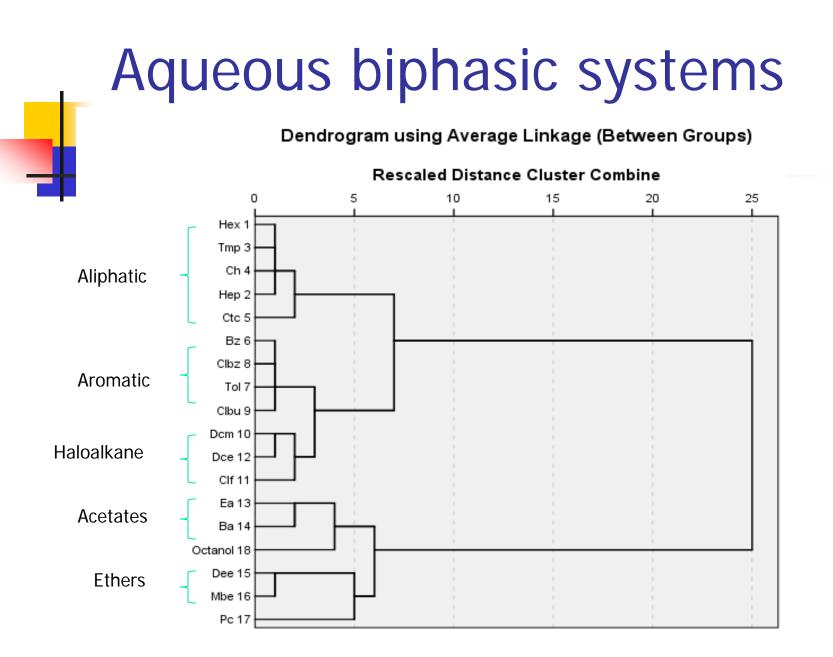
Gas \rightarrow Condensed Phase SP = c + eE + sS + aA + bB + LCondensed Phase \rightarrow Condensed Phase SP = c + eE + sS + aA + bB + W

SP = free energy related property

Totally organic biphasic systems

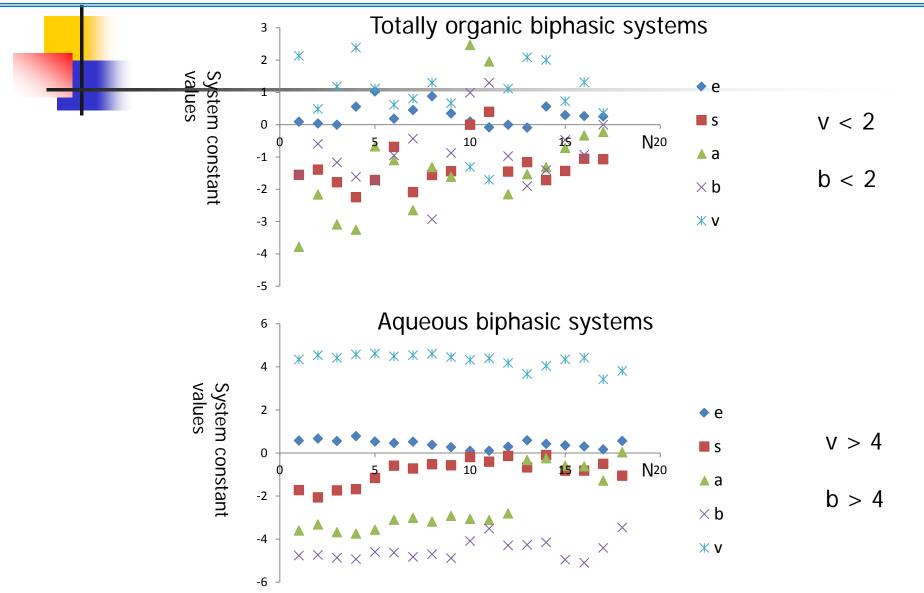
	Heptane	Isopentyl Ether	Dichloro- ethane	Octanol
Acetonitrile	IM	Μ	Μ	Μ
Propylene carbonate	IM	IM	Μ	IM
Formamide	IM	IM	IM	IM
Dimethylformamide	IM	IM	Μ	Μ
Dimethyl sulfoxide	IM	IM	Μ	Μ
Methanol	IM	Μ	Μ	Μ
Ethylene glycol	IM	IM	IM	Μ
Trifluoroethanol	IM	Μ	Μ	М

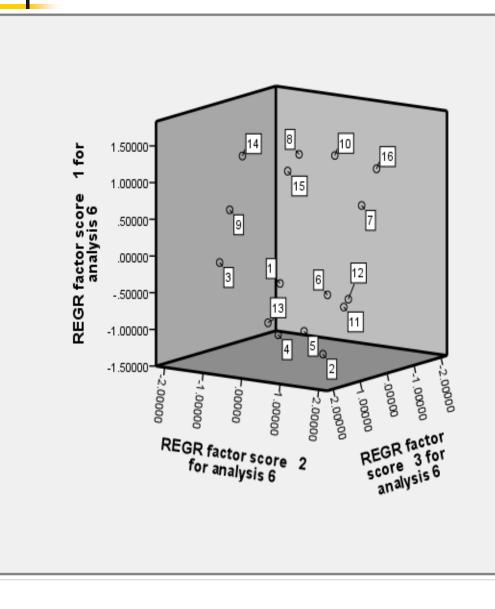

M = miscible and IM = low mutual solubility


Biphasic systems formed with heptane

Counter	Syste	System constants			
Solvent	е	S	а	b	V
Acetonitrile	0.35	-1.44	-1.61	-0.87	0.67
Methanol	0.19	-0.69	-1.10	-0.95	0.62
Ethylene glycol	0.09	-1.55	-3.78	-1.55	2.13
Formamide	0.56	-2.24	-3.25	-1.61	2.39
Dimethylformamide	0.04	-1.39	-2.16	-0.59	0.49
Dimethyl sulfoxide	0	-1.78	-3.09	-1.17	1.18
Propylene carbonate	0.45	-2.09	-2.65	-0.43	0.81
Trifluoroethanol	0.88	-1.56	-1.31	-2.93	1.30
Water	0.67	-2.06	-3.32	-4.73	4.54

Totally organic biphasic systems


Dendrogram using Average Linkage (Between Groups)

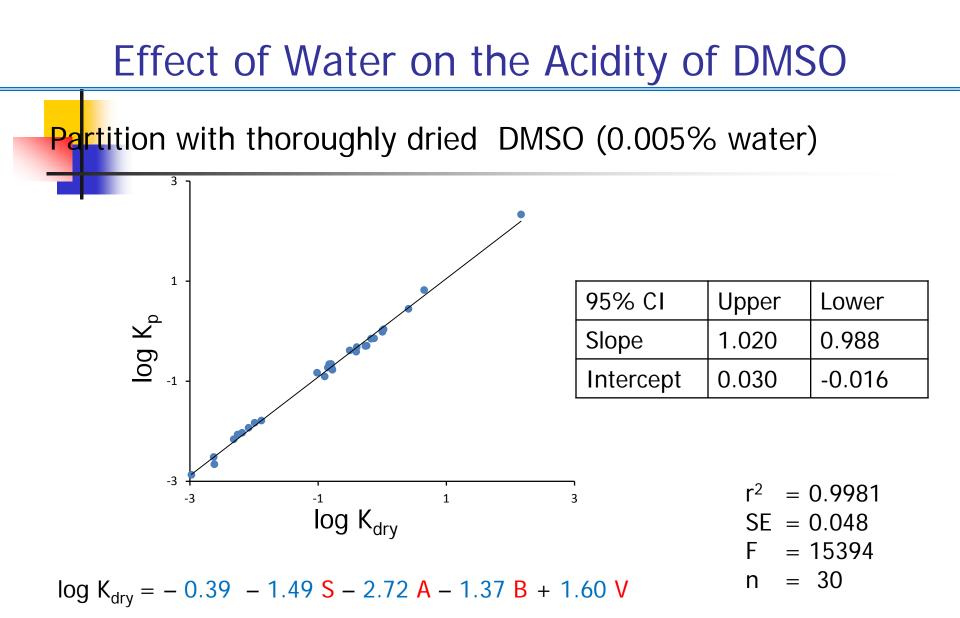


T. Karunasekara, C.F. Poole, J. Planar Chromatogr. 25 (2012) 190-199.

Variation of the system constants

Biphasic systems including water

- = Heptane-Formamide
- 2 = Formamide-Dichloroethane
- 3 = Octanol-Formamide
- 4 = Isopentyl ether-Formamide
- 5 = Heptane-Trifluoroethanol
- 6 = Heptane-Dimethylformamide
- 7 = Heptane-Acetonitrile
- 8 = Heptane-Methanol
- 9 = Heptane-Ethylene glycol
- 10 = Chloroform-Water
- 11 = Cyclohexane-Water
- 12 = Octanol-Water
- 13 = Toluene-Water
- 14 = Di-n-Butyl ether-Water
- 15 = Heptane-Water
- 16 = Dichloroethane-water


Dimethyl sulfoxide

- As a useful industrial solvent it has many applications in synthesis ,spectroscopy and chemical engineering processes
- Has an ability to dissolve both polar and non polar compounds
- Miscible with many organic solvents as well as water
- Has a wide range of medical uses
- Selectively extract polycyclic aromatic hydrocarbons
- Generally considered as a non hydrogen bond acid...???

Biphasic systems with Heptane

1	Counter solvent	System constants				
		е	5	а	Ь	V
	Propylene carbonate	0.45	-2.09	-2.65	-0.43	0.81
	Dimethylformamide	0.04	-1.39	-2.16	-0.59	0.49
	Acetonitrile	0.35	-1.44	-1.61	-0.87	0.67
	Dimethyl sulfoxide	0	-1.78	-3.09	-1.17	1.18
	Ethylene glycol	0.09	-1.55	-3.78	-1.55	2.13
	Formamide	0.56	-2.24	-3.25	-1.61	2.39
	Trifluoroethanol	0.88	-1.56	-1.31	-2.93	1.30
	Water	0.67	-2.06	-3.32	-4.73	4.54
					\square	

T. Karunasekara, C.F. Poole, J. Chromatogr. A 1218 (2011) 4525-4536.

T. Karunasekara, C.F. Poole, J. Chromatogr. A 1218 (2011) 4525-4536.

Selective Extraction Using DMSO

- Extracts polycyclic aromatic compounds from hydrocarbon-like solvents
- Log Kp = 0.289-1.781S-3.088A-1.167B+1.180V
- Moderately cohesive(v=1.180)
 - Acts as a barrier for low polarity compounds
- Reasonable capacity for polar interactions
 - Provides the driving force for transfer of polycyclic aromatic compounds to DMSO

(s = -1.781 a = -3.088 b = -1.167)

T. Karunasekara, C.F. Poole, J. Chromatogr. A 1218 (2011) 4525-4536.

Dimethyl sulfoxide-Heptane

Compound	Contribution to the partition coefficient (log K sS aA bB W Estimated (K _p)				
Anthracene	2.317	0	0.303	-1.716	4.12
Fluoranthene	2.639	0	0.323	-1.870	6.35
Pyrene	2.627	0	0.334	-1.870	6.33
Naphthalene	1.606	0	0.225	-1.280	1.83
1-Acetonaphthone	2.486	0	0.644	-1.632	16.2
1-Nitronaphthalene	2.629	0	0.338	-1.489	15.5
1-Naphthol	2.007	2.338	0.384	-1.350	1230
Bicyclohexyl	0.534	0	0	-1.867	0.024
Phenylcyclohexyl	1.058	0	0.082	-1.715	0.140

e = 0 for the heptane-dimethyl sulfoxide system