

Hyphenated HPTLC methods for identification and structure elucidation

PD Dr. Gertrud Morlock, Institute of Food Chemistry University of Hohenheim, Stuttgart

Hyphenation

- 1980: term hyphenation by Hirschfeld
- comprises the different approaches to combine mainly spectrometers with chromatographic systems to get further information about the sample
- hyphen (-) symbolizes this attempt of combination, which did not reach its stage of full maturity so far
- slash (/) is found for hyphenated methods at a maturate state
- 2007: term "hypernation" (super-hyphenation) by Wilson and Brinkman
 → to place <u>all</u> of the required spectrometers into a single system
 so that all of the spectroscopic information is obtained in a single run

Hyphenation

Problems associated with column-based hypernations are:

- Capital cost and strategies for dealing with the large amounts of data produced by such systems.
- Complexity of the instrumentation increases \rightarrow difficult to operate in routine
- A single eluent (\rightarrow optimal for all detectors) is difficult to obtain.
- Differences in sensitivity are challenging.

All these problems are less challenging in HPTLC-based hypernations:

- Open system is highly adaptive to different sensitivities
- Cost-effective by modular instrumentation
- Generating less data due to targeted access to points-of-care on the plate
- Directly accessible for the respective optimal solvent

=> The main difference:

HPLC: sample in solvent; after separation \rightarrow sample in the waste HPTLC: solvent evaporated; after separation \rightarrow still on the plate.

G Model CHROMA-351018; No. of Pages 10

ARTICLE IN PRESS

Journal of Chromatography A, xxx (2010) xxx-xxx

Contents lists available at ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

Hyphenations in planar chromatography-

Gertrud Morlock*, Wolfgang Schwack

University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70599 Stuttgart, Germany

- HPTLC-UV/Vis/FLD-MS [13,14],
- HPTLC-UV/Vis/FLD-bioactivity-HRMS [15],
- HPTLC-UV-FTIR [16,17],
- HPTLC-UV/Vis/FLD-FTIR ATR [18],
- TLC-Vis-SERS [12].

ARTICLE INFO

Article history: Available online xxx

Keywords: Mass spectrometry High-performance thin-layer

chromatography Effect-directed analysis Bioassays Cost-effective analysis High-throughput system

ABSTRACT

This review is focused on planar chromatography and especially on its most important subcategory highperformance thin-layer chromatography (HPTLC). The image-giving format of the open, planar stationary phase and the post-chromatographic evaporation of the mobile phase ease the performance of various kinds of hyphenations and even super-hyphenations. Examples in the field of natural product search, food and lipid analysis are demonstrated, which point out the hyphenation with effect-directed analysis (EDA) and mass spectrometry and illustrate the efficiency gain. Depending on the task at hand, hyphenations can readily be selected as required to reach the relevant information about the sample, and at the same time, information is obtained for many samples in parallel. The flexibility and the unrivalled features through the planar format valuably assist separation scientists.

© 2010 Elsevier B.V. All rights reserved.

	LC-MS								
M	TLC/HP1	-MS HPLC-MS							
ante.	Elution-based approaches	Desorption-based approaches							
	Anderson/Busch 1998 Micro capillary arrow	Atom bombardment FAB Chang et al.1984							
uttgart	Van Berkel et al. 2002 Surface sampling probe	Ion bombardment SIMS Kushi/Handa 1985							
a cnemis iheim, St	Hsu/Shiea et al. 2003 Overrun chromatography	LD-CI Ramaley et al. 1983 MALDI Gusev/Hercules et al. 1995							
e or rooc of Hohen	Chai et al. 2003 OPLC Forced-flow techniques	Laser light beam SALDI Chen/Shiea/Sunner 1998 ELDI Lin/Shiea et al. 2007 ELDI Resano/Vanhaecke et al. 2007							
versity (Luftmann 2004 Elution head-based interface Prosek et al. 2004	LIAD Cheng/Huang/Shiea 2009							
Uni		Spray beam DESI Van Berkel et al. 2005 EASI Eberlin et al. 2008							
		Excited gas beam							
	G. Morlock, W. Schwack, TrAC, in submission	DART Morlock/Ueda 2007							

Elution head-based HPTLC-MS \rightarrow TLC-MS Interface

H. Luftmann, Anal Bioanal Chem 378 (2004) 964-968 A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543-1551

Institute of Food Chemistry University of Hohenheim, Stuttgart

Elution head-based HPTLC-MS

Elution head

Cutting edge geometry \rightarrow U. Jautz, G. Morlock, J Planar Chromatogr 21 (2008) 367

Cutting edge height

- 0.2 mm for standard layers \rightarrow CAMAG Bibliography Service CBS 102 (2009)
- 0.1 mm for extra thin layers \rightarrow U. Jautz, G. Morlock, Anal Bioanal Chem 387 (2007) 1083
- 0.5 mm for preparative layers \rightarrow E. Dytkiewitz, G. Morlock, J AOAC Int 91 (2008) 1237

Elution profiles with different solvents

A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543-1551

Repeatability of the extraction

 \rightarrow %*RSD* = 6.7 % (6 ng/zone, *n* = 5)

SIM elution profile of ITX @ m/z 255 [M+H]⁺ and 277 [M+Na]⁺

Repeatability of extraction

SIM @ *m*/*z* 329 [M+Na]⁺ Repeatability (*%RSD, n* = 9): 7 %

Analytical response

SIM elution profile of ITX @ m/z 255 [M+H]⁺ and 277 [M+Na]⁺

Institute of Food Chemistry University of Hohenheim, Stuttgart

Institute of Food Chemistry University of Hohenheim, Stuttgart

Performance data obtained with the TLC-MS interface

 \Rightarrow before: check of performance data by HPTLC-Vis

Calibration for Solvent Blue 35 (%RSD = 1.3%)

G. Morlock, W. Schwack, N. Brett, in preparation

Performance data obtained with the TLC-MS interface

HPTLC-ESI-MS (SIM, peak area)		Linea	rity	Precision		
Dyes	hR _F - value	Calibration range (ng/band)	Determination coefficient	Conc. (ng/band)	n = 5, <i>%RSD</i>	
Dimethyl Yellow	65	12 – 234	0.9943	1125	8.1	
Oracet Red G	50	2 – 39	0.9950	189	11.0	
Solvent Blue 35	41	10 – 52	0.9931	750	4.6	
Sudan Red G	27	6 – 117	0.9984	564	8.8	
Solvent Blue 22	17	21 – 78	0.9976	750	3.8	
Oracet Violet 2R	4	8 – 156	0.9752	1500	11.6	

G. Morlock, W. Schwack, N. Brett, in preparation

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Detectability by HPTLC-ESI-MS/MS

 \rightarrow LOQ better than 20 pg/zone harman (S/N 20)

 \rightarrow Detectability comparable to HPLC/MS

U. Jautz, G. Morlock, J Chromatogr A 58 (2006) 244-250

Hands-free interface called 'R3D3'

Data of validation without IS

- \rightarrow Repeatability (%RSD, n = 6) in matrix: 5.6 %
- \rightarrow Linearity R²: 0.9973

H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) 3772-3776

Sample	Pharmaceutical mean ± SD (mg/tablet)	Energy drink mean ± SD (mg/100 mL)	
HPTLC/ESI-MS	102.09 ± 5.76	<mark>32.91 ±</mark> 1.60	
RSD (%, n = 6)	(5.6)	(4.9)	
HPTLC/UV	101.98 ± 2.30	33.71 ± 0.96	
RSD (%, n = 5)	(2.3)	(2.8)	
Label	100	32	

 \rightarrow Comparable findings to validated HPTLC/UV methods (F-test, t-test)

Comparison of automated interfaces

Parameter Precision	Linear Response
%RSD	r ²

Quantification without internal standard

•	Elution head (autom.)	≤ 5.6 %	0.9973	
	DESI	≤ 16.8 %	0.95 - 0.98	
	MALDI	10 %	-	
	LA-ICP	17 – 41 %	≥ 0.90	

Quantification with internal standard

Micro-junction ESI	≤ 4.4 %	0.9999	
SALDI/APCI	7 %	0.9991	
MALDI	≤ 8.9 %	0.9969	
LA-ICP	3 – 40 %	≥ 0.98	

G. Morlock, W. Schwack, TrAC, in submission

Active ingredients in energy drinks

Simultaneous determination by MWL scan (UV/FLD) \rightarrow Derivatization \rightarrow Vis

Institute of Food Chemistry University of Hohenheim, Stuttgart

Confirmation by MS

M. Aranda, G. Morlock, J Chromatogr A 1131 (2006) 253-260

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Caffeine, ergotamine and metamizol in tablets

M. Aranda, G. Morlock, J Chromatogr Sci 45 (2007) 251-255

Pyridinol in tablets

Institute of Food Chemistry University of Hohenheim, Stuttgart

... no need for a higher separation power...

- \rightarrow Repeatability (%RSD, n = 6) in matrix: 0.4 %
- \rightarrow Intermediate precision (%RSD, n = 3) in matrix: 2.95 %
- \rightarrow Recoveries of spiked samples (three levels): 98.5 101.9 % (± 3.6 4.7%)
- \rightarrow LOD/LOQ: 0.6/2.0 µg/mL (6/20 ng/band)
- \rightarrow Up to 17 times less mobile phase consumption
- \rightarrow Up to 8 times faster
- \rightarrow Selectivity proven by spectral purity

Effect-directed analysis \rightarrow sum parameter!

HPTLC-VIS/UV/FLD-EDA-HRMS

G. Morlock, W. Schwack LCGC Eur July (2008) 366-371 A. Klöppel, W. Grasse, F. Brümmer, G. Morlock, J Planar Chromatogr 21 (2008) 431-436

What is it? \rightarrow HRMS

G. Morlock, W. Schwack LCGC Eur 21 (2008) 366-371

Institute of Food Chemistry University of Hohenheim, Stuttgart

Case study: Structure elucidation

Correct substance assignment of a dye mixture?

Dimethyl Yellow Oracet Red G Solvent Blue 35 Ariabel Red Oracet Violet 2R Indophenol

Improved mass assignment

... from a single quadrupole MS \rightarrow MassWorks software (Cerno)

www.cernobioscience.com

Dye	<i>hR_F-</i> value	Monoisotopic mass measured	Theoretical monoisotopic mass of the proposed ion	Δ (ppm)	Spectral accuracy	Double bond equivalent	Protonated molecular formula	Assigned to
Dimethyl Yellow	65	226.1402	226.1344	-25,5482	98.5341	8.5	$C_{14}H_{16}N_{3}$	[M+H]+

Dimethyl Yellow

🏽 << New Calibration >> - MassWorks

File Edit View Tools Graph Window Help

🖹 🍰 🖀 📓 🗶 🕼 💯 🖄 📩 🖪 🖛 🏎 🗽 🔍 🗁 🐇 🛄 🏩

- 2 🛛

File Edit View Tools Graph Window Help

🖹 🍰 🗑 🗑 🕼 💯 ☆ 🕼 🖉 🗢 🛶 🗽 🔍 👍 🖺 🐗 👘

- 2 🛛

Improved mass assignment

... from a single quadrupole MS \rightarrow MassWorks software (Cerno)

www.cernobioscience.com

Dye	<i>hR_F-</i> value	Monoisotopic mass measured	Theoretical monoisotopic mass of the proposed ion	∆ (ppm)	Spectral accuracy	Double bond equivalent	Protonated molecular formula	Assigned to
Dimethyl Yellow	65	226.1402	226.1344	-25,5482	98.5341	8.5	C ₁₄ H ₁₆ N ₃	[M+H] ⁺
Oracet Red G	50	238.0893	238.0868	-10.4850	91.1892	10.5	C ₁₅ H ₁₂ NO ₂	[M+H] ⁺

Dimethyl Yellow

Oracet Red G

Improved mass assignment

... from a single quadrupole MS \rightarrow MassWorks software (Cerno)

www.cernobioscience.com

	Dye	<i>hR_F-</i> value	Monoisotopic mass measured	Theoretical monoisotopic mass of the proposed ion	∆ (ppm)	Spectral accuracy	Double bond equivalent	Protonated molecular formula	Assigned to
	Dimethyl Yellow	65	226.1402	226.1344	-25,5482	98.5341	8.5	$C_{14}H_{16}N_{3}$	[M+H] ⁺
	Oracet Red G	50	238.0893	238.0868	-10.4850	91.1892	10.5	C ₁₅ H ₁₂ NO ₂	[M+H]+
and a state of the	Oracet Violet	17	305.1610	305.1654	14.3803	98.0042	11.5	C ₂₀ H ₂₁ N ₂ O	[M+H] ⁺
	Indophenol ?	4	239.0839	239.0821	7.7270	85.4156	10.5	C ₁₄ H ₁₁ N ₂ O ₂	[M+H] ⁺
		 N		NHMe		. O NH	H ₂	× N	
	N°N ^N) H ₂ 0		ОН
	Dimethyl Yellow		Oracet	Red G	Or	acet Violet 2 238 Da	2R	Indopheno 199 Da	bl

 \rightarrow The elution order was wrongly assigned.

Improved mass assignment

... from a single quadrupole MS \rightarrow MassWorks software (Cerno)

Dye	<i>hR_F-</i> value	Monoisotopic mass measured	Theoretical monoisotopic mass of the proposed ion	∆ (ppm)	Spectral accuracy	Double bond equivalent	Protonated molecular formula	Assigned to
Dimethyl Yellow	65	226.1402	226.1344	-25,5482	98.5341	8.5	$C_{14}H_{16}N_3$	[M+H] ⁺
Oracet Red G	50	238.0893	238.0868	-10.4850	91.1892	10.5	C ₁₅ H ₁₂ NO ₂	[M+H] ⁺
Indophenol ?	17	305.1610	305.1654	14.3803	98. <i>004</i> 2	11.5	C ₂₀ H ₂₁ N ₂ O	[M+H] ⁺
Oracet Violet 2R	4	239.0839	239.0821	7.7270	85.4156	10.5	C ₁₄ H ₁₁ N ₂ O ₂	[M+H] ⁺
	 \N\	°	NHMe			?	Ö V	IH ₂

Dimethyl Yellow

Oracet Red G

Indophenol 199 Da

Oracet Violet 2R

Improved mass assignment

... from a single quadrupole MS \rightarrow MassWorks software (Cerno)

Dye	<i>hR_F-</i> value	Monoisotopic mass measured	Theoretical monoisotopic mass of the proposed ion	∆ (ppm)	Spectral accuracy	Double bond equivalent	Protonated molecular formula	Assigned to
Dimethyl Yellow	65	226.1402	226.1344	-25,5482	98.5341	8.5	C ₁₄ H ₁₆ N ₃	[M+H]+
Oracet Red G	50	238.0893	238.0868	-10.4850	91.1892	10.5	C ₁₅ H ₁₂ NO ₂	[M+H] ⁺
Solvent Blue 22	17	305.1610	305.1654	14.3803	98.0042	11.5	C ₂₀ H ₂₁ N ₂ O	[M+H] ⁺
Oracet Violet 2R	4	239.0839	239.0821	7.7270	85.4156	10.5	C ₁₄ H ₁₁ N ₂ O ₂	[M+H] ⁺

Dimethyl Yellow

Oracet Red G

NHMe

Oracet Violet 2R

Case study: Structure elucidation

Correct substance assignment of a dye mixture?

Dimethyl Yellow

Oracet Red G

Solvent Blue 35

Sudan Red G

Solvent Blue 22

Oracet Violet 2R

Just partly:

- 1. Ariabel red is Sudan red G.
- 2. The elution order was incorrectly assigned.
- 3. One compound was not the one intended to be: The quinoneanil *Solvent Blue 22* was incorrectly labeled as *indophenol*.
- 4. Two manufacturers with incorrect label.

G. Morlock, W. Schwack, N. Brett, in preparation

Additives in food packaging foils

Detection of additives in polymer packaging foils

Bis-2-ethylhexyladipate

MS signals of	Mass determined	Mass theoretical	Δ (ppm)	Sum formula	Assignment
HPTLC	393,2985	393,2981	-1,0691	C ₂₂ H ₄₂ O ₄ Na	[M+Na]⁺
zone	763,6077	763,6064	-1,7164	C ₄₄ H ₈₄ O ₈ Na	[2M+Na]+
100 1 90 - 80 - 70 - 60 - 50 - 50 - 30 - 20 - 10 -		m/z 393		m/z 763	

Detection of additives in polymer packaging foils

Bis-2-ethylhexyladipate

MS signal of	Mass determined	Mass theoretical	∆ (ppm)	Sum formula	Assignment
Plastic foil	371,3174	371,3161	-3,4071	$C_{22}H_{43}O_4$	[M+H]⁺
HPTLC	393,2985	393,2981	-1,0691	C ₂₂ H ₄₂ O ₄ Na	[M+Na] ⁺
zone	763,6077	763,6064	-1,7164	C ₄₄ H ₈₄ O ₈ Na	[2M+Na] ⁺

Dye analysis

G. Morlock, C. Oellig, J AOAC Int 92 (2009) 547-554

Dye analysis

Up to 40 runs in 12 min using 8 mL solvent => 20-s runs with 200 µL solvent comsumption

Digital quantification

Institute of Food Chemistry University of Hohenheim, Stuttgart

Digital filters

G. Morlock, W. Schwack, Die Aktuelle Wochenschau der GDCh, Woche 26 (2009), www.aktuelle-wochenschau.de/2009/index09.htm

Dye analysis

Institute of Food Chemistry University of Hohenheim, Stuttgart

Search in spectra library

Link files Compare analysis - library Compare library / Edit library Compare library - library

Confirmation by mass spectra

G. Morlock, C. Oellig, J AOAC Int 92 (2009) 547-554

Rare examples for HPTLC

Institute of Food Chemistry University of Hohenheim, Stuttgart

Rare examples for HPTLC

	0-		3	1	1. 5.7	1	
Information	obtained	from a sing	le plate		Identity		0
Sample	Dyes found	Concentration calculated	% <i>RSD</i> (n = 2)	Spectra correlation (400–800 nm) of standard and sample	Mass signal(s) (full scan, <i>m/z</i> 100–900)		C
Bakery ink formulation	122	66.4 g/L	0.0	≥ 0.99996	228 [M-2Na] ²⁻		C
	124	13.3 g/L	2.1	≥ 0.99957	279 [M-2Na] ²⁻		
					178 [M-3Na] ³⁻	E121	E141 Cu
Energy drink 1	133	9.1 mg/L	0.1	≥ 0.99964	373 [M-2Na] ²⁻	E103	E141 Na
Energy drink 2	122	76.2 mg/L	3.6	≥ 0.99958	228 [M-2Na] ²⁻	E125	E101
	0	1993	Ser.	1	E110	E104	E129 E105
	(AL)				E131		
Pro-	Calibration .		1	1 /	E124 E142	E123	E102
	-		18	*	E126 E101b	E151	Erico
					E132	E120	E103

Cost comparison

¹K. Minioti et al., Anal Chim Acta 583 (2007) 103–110 ²G. Morlock, C. Oellig, J AOAC Int 92 (2009) 547-554

Operating costs/run (€)	HPLC ¹	HPTLC ²
Mobile phase	0,58	0,003
Stationary phase	0,64	0,11
Disposal	0,04	0,0001
Sum	1,26	0,11
		=> 11 x lower
Time/run (min)	HPLC	HPTLC
Application/Injection		0,50
Application/Injection Run time	43	0,50 0,20
Application/Injection Run time Detection	43	0,50 0,20 0,10
Application/Injection Run time Detection Sum	43 43	0,50 0,20 0,10 0,80
Application/Injection Run time Detection Sum	43 43	0,50 0,20 0,10 0,80 => 54 x faster

		LC-MS
M	TLC/HP1	TLC-MS HPLC-MS
ante.	Elution-based approaches	Desorption-based approaches
	Anderson/Busch 1998 Micro capillary arrow	Atom bombardment FAB Chang et al.1984
uttgart	Van Berkel et al. 2002 Surface sampling probe	Ion bombardment SIMS Kushi/Handa 1985
a cnemis iheim, St	Hsu/Shiea et al. 2003 Overrun chromatography	LD-CI Ramaley et al. 1983 MALDI Gusev/Hercules et al. 1995
e or rooc of Hohen	Chai et al. 2003 OPLC Forced-flow techniques	Laser light beam SALDI Chen/Shiea/Sunner 1998 ELDI Lin/Shiea et al. 2007 ELDI Resano/Vanhaecke et al. 2007
versity (Luftmann 2004 Elution head-based interface Prosek et al. 2004	LIAD Cheng/Huang/Shiea 2009
Uni		Spray beam DESI Van Berkel et al. 2005 EASI Eberlin et al. 2008
		Excited gas beam
	G. Morlock, W. Schwack, TrAC, in submission	DART Morlock/Ueda 2007

HPTLC-FLD-MALDI-TOF MS

M. Schuerenberg et al., IMSC 2009, Bremen, Poster PMM 386

University of Hohenheim, Stuttgart Institute of Food Chemistry

Institute of Food Chemistry

HPTLC-FLD-MALDI-TOF MS

Bruker Daltonics Application Note MT-101

Quantification?

Comparison of mass spectra

		LC-MS
M	TLC/HP1	TLC-MS HPLC-MS
ante.	Elution-based approaches	Desorption-based approaches
	Anderson/Busch 1998 Micro capillary arrow	Atom bombardment FAB Chang et al.1984
uttgart	Van Berkel et al. 2002 Surface sampling probe	Ion bombardment SIMS Kushi/Handa 1985
a cnemis iheim, St	Hsu/Shiea et al. 2003 Overrun chromatography	LD-CI Ramaley et al. 1983 MALDI Gusev/Hercules et al. 1995
e or rooc of Hohen	Chai et al. 2003 OPLC Forced-flow techniques	Laser light beam SALDI Chen/Shiea/Sunner 1998 ELDI Lin/Shiea et al. 2007 ELDI Resano/Vanhaecke et al. 2007
versity (Luftmann 2004 Elution head-based interface Prosek et al. 2004	LIAD Cheng/Huang/Shiea 2009
Uni		Spray beam DESI Van Berkel et al. 2005 EASI Eberlin et al. 2008
		Excited gas beam
	G. Morlock, W. Schwack, TrAC, in submission	DART Morlock/Ueda 2007

HPTLC-DART-MS

HPTLC/DART-TOF-MS x10³ Intensity (23041) 307.11261 20-10-308.11580 478.21770 561.55612 613.21753 437.13472 306.10467 405.16158 236.07587 200 300 500 600 700 100 4Ó0 htensity (4519) **183.09172** 4000 411.39830 Glu P1 AαC Mix A Harman 2000-320.25897 536.16614 65.05983 184.09514 369.35340 429.42818 610.18879 600 100 200 300 400 500 700 m/z

G. Morlock, Y. Ueda, J Chromatgr A 1143 (2007) 243-251

Institute of Food Chemistry University of Hohenheim, Stuttgart

Spatial resolution of DART

Speed: ~2 mm/10s

Repeatability

Mass chromatogram of ITX @ m/z 255.087 [M+H]⁺

 \rightarrow %*RSD* = 71 % (32 ng/zone, *n* = 5)

APGD-HPTLC-TOF MS

G. Morlock, W. Schwack, TrAC, in submission

DART/APGD \rightarrow dry desorption technique \leftarrow DESI

- \rightarrow no plate preparation etc. \leftarrow SALDI, MALDI
- \rightarrow ambient conditions, no high voltage \checkmark micro junction
- \rightarrow simple spectra \longleftrightarrow MALDI, SIMS
- \rightarrow quantitativ with internal standard \rightarrow scan function

- strict protocol for plate preparation
- ✓ complex spectra
- \checkmark quantitativ with internal standard \rightarrow scan function
- ✓ *universally* connectable to any LC-MS system given
- Elution-head based Interface

- ✓ plug & play interface (without adjustments or modifications)
- ✓ whole plate (no cut)
- $\checkmark\,$ all carriers on mostly all layers $\, \longleftrightarrow \,$ micro junction
- \checkmark whole zone incl. depth profile \longrightarrow high detectabilities
- ✓ quantitativ *without* internal standard ↔ desorption techniques
- ✓ targeted recording → cost-effective, but *no* scan function

G Model CHROMA-351018; No. of Pages 10

ARTICLE IN PRESS

Journal of Chromatography A, xxx (2010) xxx-xxx

Contents lists available at ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

Hyphenations in planar chromatography-

Gertrud Morlock*, Wolfgang Schwack

University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70599 Stuttgart, Germany

- HPTLC-UV/Vis/FLD-MS [13,14],
- HPTLC-UV/Vis/FLD-bioactivity-HRMS [15],
- HPTLC-UV-FTIR [16,17],
- HPTLC-UV/Vis/FLD-FTIR ATR [18],
- TLC-Vis-SERS [12].

ARTICLE INFO

Article history: Available online xxx

Keywords: Mass spectrometry High-performance thin-layer

High-performance thin-lay chromatography Effect-directed analysis Bioassays Cost-effective analysis High-throughput system

ABSTRACT

This review is focused on planar chromatography and especially on its most important subcategory highperformance thin-layer chromatography (HPTLC). The image-giving format of the open, planar stationary phase and the post-chromatographic evaporation of the mobile phase ease the performance of various kinds of hyphenations and even super-hyphenations. Examples in the field of natural product search, food and lipid analysis are demonstrated, which point out the hyphenation with effect-directed analysis (EDA) and mass spectrometry and illustrate the efficiency gain. Depending on the task at hand, hyphenations can readily be selected as required to reach the relevant information about the sample, and at the same time, information is obtained for many samples in parallel. The flexibility and the unrivalled features through the planar format valuably assist separation scientists.

© 2010 Elsevier B.V. All rights reserved.

HPTLC-DRIFT

Ellipsoidal collecting mirror

UV-spectra of 5 phenyl urea herbicides

Characteristic FTIR bands

FTIR spectrum of neburon in drinking water

HPTLC/ATR-IR spectra via the interface

Dithiophosphate additives in mineral oil

E. Dytkiewitz, G. Morlock, J AOAC Int 91 (2008) 1237-1244

Raman: FT-SERS

 \rightarrow based on the work of Dr. Klaus Burger⁺; Bayer Laboratories, Germany

Vacuum transfer

10 ng/zone p-nitrophenol

HPLC-HPTLC

Microbore 2.1 x 100 mm Flow rate 50-100 μ L/min

Institute of Food Chemistry University of Hohenheim, Stuttgart

Surface water spiked with 50 pesticides

Institute of Food Chemistry University of Hohenheim, Stuttgart

HPLC-HPTLC

- \rightarrow based on the work of Dr. Klaus Burger⁺, Bayer Laboratories, Germany
- \rightarrow predestinated for
- © separation problems due to lack of separation power
- © samples with varying matrix content (multi-method)
- © peak purity testing of HPLC peaks
- © problematic, time-consuming post-chromatographic derivatization in HPLC
 - → results obtained by two independend methods,
 i.e. two different separation mechanisms
- \rightarrow gain in analytical quality
- → still in use by Andreas Kinast andreas.kinast@currenta.de www.currenta.de

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Benefits

More information about unknowns

C. McKinlay, CBS 101 (2008) 12-13

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Benefits

Dye analysis

 \rightarrow No resonable calibration function was obtained by TLC.

 \rightarrow For quantification, just HPTLC is reliable.

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Benefits

G. Morlock, M. Vega, J Planar Chromatogr 20 (2007) 411-417

Quantification of sucralose in cakes

Institute of Food Chemistry University of Hohenheim, Stuttgart

Quantification of sucralose in cakes

Mode A Reagent 1 @ 500 nm								
Samples	hR _F	Sucralose found (mg/100 g)	%RSD n = 3	Sucralose labeled (mg/100g)				
Biscuits	57	27.7	2.4	24.8				
Marmol cake	57	48.0	2.0	45.3				
Orange cake	56	43.9	0.6	45.3				
Mode B Reagent 2 @ 405 nm								
Biscuits	56	27.9	1.5	24.8				
Marmol cake	56	47.4	0.5	45.3				
Orange cake	56	44.2	1.6	45.3				
Mode C Reagent 2 @ UV 366/>400 nm								
Biscuits	56	27.1	0.9	24.8				
Marmol cake	57	44.8	4.2 45.3					
Orange cake	56	41.6	3.0	.0 45.3				

... in milk-based confection (Burfi)

/extracted in MeOH, filtered

350.0 [AU]

250.0

200.0

150.0

100.0

50.0

0.0

Tracks

100.0

G. Morlock, S. Prabha, J Agric Food Chem 55 (2007) 7217-7223

... in further matrices

Milk, biscuit, chocolate, cola, bonbons, energy/sport drinks

Sample preparation and chromatography

G. Morlock, M. Vega, J Planar Chromatogr 20 (2007) 411-417

- High throughput (46 runs in 15 min by (anti-)parallel development, 15 min-staggered offline system) → 1000 runs/8h-day
- Resulting in 20-s runs with 330 μL solvent consumption
- Almost no disposal costs < 0.01 Cent/run
- Selective derivatization \rightarrow compensates low separation power
- Reduced sample preparation: no SPE
- Analysis without acetonitrile!

- Ultra-rapid HPLC with 2 min gradient: 720 runs/24-h day
- Sample preparation: Need of SPE for MS or ELSD as detector

G. Morlock, W. Schwack, LCGC Eur July (2008) 366-371

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Benefits

Multiple detection on a single track/plate

HPTLC-UV/Vis/FLD-MS

Institute of Food Chemistry University of Hohenheim, Stuttgart

All active ingredients in energy drinks

Simultaneous determination by MWL scan for UV/FLD \rightarrow derivatization \rightarrow Vis...

All active ingredients in energy drinks

\rightarrow Confirmation by MS or UV spectra

M. Aranda, G. Morlock, J Chromatogr A 1131 (2006) 253-260

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Benefits

Method comparison

Poor quantitative results

Good quantitative results

Comparable to HPLC-ELSD?

Method comparison

Sample	Sugar found (n = 2)	HPLC-ELSD		HPTLC-Vis	
		%	%RSD	%	%RSD
Cola	Sucrose	12.0	0.1	12.5	5.3
	Fructose	1.1	0.4	1.1	5.3
	Glucose	1.3	4.5	-	-
Milk	Lactose	8.0*	5.6	5.3	1.8
Chocolate	Sucrose	34.9	0.5	35.9	0.8
	Lactose	6.9	12.9	7.1	10.0
Propolis	Glucose	10.9	9.3	10.7	1.1
	Fructose	17.3	0.0	17.4	6.0
	Sucrose	4.4*	5.0	7.3*	7.0
Karamalt	Glucose	3.3	2.8	4.1	3.9
	Fructose	2.2	0.7	2.0	1.6
	Maltose	2.5	2.5	2.5	6.5
Biscuits	Sucrose	17.9*	1.2	23.9*	1.8

Method comparison

Comparable to HPLC-ELSD? => YES

Analyses time

- HPTLC: 1 h => 3 min per sample
- HPLC: 5.3 h => 16 min per sample

G. Morlock, G. Shabier, in preparation

University of Hohenheim, Stuttgart

Institute of Food Chemistry

Benefits

Planar Chromatography

Food analysis 1987-2007

G. Morlock, W. Schwack, J Planar Chromatogr 20 (2007) 399-407

Planar Chromatography

1938 TLC Thin-layer chromatography

→1975 HPTLC High-performance TLC

→ 2001 UTLC UltraTLC

J. Sherma, G. Morlock, J. Planar Chromatogr. 21 (2008) 471-477

Office Chromatography

(Miniaturized) Planar chromatography using office peripherals

G. Morlock, C. Oellig, L. Bezuidenhout, M. Brett & W. Schwack, Anal. Chem. 82 (2010) 2940-2946

Nanostructured UTLC plates

Sample flow Solvent flow

Ultrathin plate (UTLC)

S. Jim, M. Taschuk, G. Morlock, L. Bezuidenhout, W. Schwack, M. Brett Anal. Chem. 82 (2010) in print

HPTLC 2011, Basel : 6th-8th July 2011 → www.hptlc.com