

Latest development of Thin Layer Chromatography at Merck

Dr. Mehmet Dogan, PLS/LB- LC Customer Seminar 2009

Silica and Aluminium oxide production facilities, Gernsheim

Silica gel Production

- Production of raw silica gel for the preparative chromatography
 - Four reactors nearly full-automatic for direct further processing
- Milling and classification of silica gel
 - with different milling equipment, air sieves and air classifier for preparative applications, HPLC and TLC
- Manufacturing of special silica gel mixtures
 - customized products (i.e. Japan und USA)
 - for the thin-layer chromatography without and with different additives (i.e. fluorescent materials, aerosils, etc.)

Current output

(with increasing volume)

Silica gel :

• Aluminium oxide:

- Products of spray drying :
- Miscellaneous products:
- > 1.500 tons (360 tons for internal use) ~ 150 tons (40 tons for internal use) ~ 120 tons ~ 120 tons

Method tranfer from TLC to HPLC

MERCK

Fig. 1: TLC separation (left) and the corresponding HPLC separation (right)

HPLC and TLC

- Separations occur by the same retention mechanism
- Differences arise from:
 - Kinetic performance
 - Stationary phase format
 - Development mode vs. elution
 Disposable stationary phase (TLC)
 - Detection in the presence of the stationary phase (TLC)

Merck Pioneered Thin Layer Chromatography MERCK

- 1938 Al₂O₃ layers (Izmailov and Shraiber)
- 1951 Silica gel layers with calcium sulphate (Kirchner)
- 1950 Egon Stahl is founder of thin layer Chrom. and standardized silica gels (Higher sensitivity more and universal scope of applications)
- 1958 Merck launched TLC during Achema exhibition
- 1966 Pre-coated TLC plates
- 1975 Pre-coated HPTLC plates
- 1978 Modified sorbents for TLC and HPTLC
- 1995 Spherical sorbents for HPTLC (LiChrospher®)
- 2002 Ultra thin monolithic silica plates (UTLC)
- 2003 LuxPlate®
- 2006 ProteoChrom[®] Plates

First presentation of pre-coated plates, Achema 1958

TLC Production Today

MERCK

- 20 employes in production plant
- > 7 million plates per year
- Every single plate is visually inspected
- More than 60 different products

On these plates 45 million analyses are carried out each year!

Production Process of TLC Plates

Preparation of suspension of silica gel in water (eventually with fluorescence indicator)

Coating of plates or sheets (glass, aluminum, plastic)

... a success story ... Thin-layer chromatography

In focus: User-friendliness

• 1966: Merck launches precoated plates for TLC

TLC - Many Application Fields

Pharma & Herbal Medicine

R&D / Synthesis Labs
 Stability testing
 Uniformity testing
 Sub-component evaluation

 Quality Control / Analytical Labs
 In-process control

Identity testing

Environmental Analysis Water & soil analysis Residue analysis

Clinical Labs

Drug monitoring Metabolism studies Doping control

Forensic

Drug of Abuse, Poisons, Alkaloids

Food

Quality control

Stability testing Drug residue testing Testing for additives Mycotoxins (including aflatoxins) Market Thin Layer Chromatography

Total 40 – 50 Mio EUR AGR: 2 %

SDi Global Assessment Report 9th Edition, LCGC Oct.08

Thin Layer Chromatography

- Stationary phase is a thin layer of sorbent coated on an inert backing material
- Sample is applied to the layer as a spot or band near to the bottom edge
- Separation occurs in an enclosed chamber by contacting the bottom edge of the layer by the mobile phase
- Separation results from the different rates of migration of the sample components in the direction traveled by the mobile phase
- Sample components are identified based on their position in space

TLC – as the First Choise

- Fast separations no need for sophisticated instruments
- Direct visualisation of results by either UV or staining (Postchromatographic reaction)
- Simultaneous analysis of many samples in parallel under the same conditions
- No need sample preparation step because TLC plates are disposables

TLC Range at a Glance

Sorbens types
 Silica 60
 Modified silica: RP2, RP8, RP18, NH₂, Diol, CN;
 Aluminium oxide, Cellulose

 Backing (support) Glass Aluminium (plastic)

- Detection
- with fluorescence indicator $\mathsf{F}_{254}\text{:}green,\,\mathsf{F}_{254s}\text{:}$ blue, ($\mathsf{F}_{366}\text{:}\text{blue})$

• Plate sizes (in cm) 20 x 20, 10 x 20, 5 x 10 5 x 7,5, 2,5 x 7,5

Plate thickness
 TLC: 250 μm, HPTLC: 200 μm, 100 μm, UTLC: 10 μm, PLC: 0,5 – 2 mm

TLC Technologies

The separation efficiency of a TLC plate can be improved by:

- Mean particle size of the silica sorbent
- Particle size distribution
- Layer thickness

TLC: HPTLC: UTLC:	Classical thin layer chromatography High performance thin layer chromatography Ultra-thin layer chromatography	Analytical
PLC:	Preparative layer chromatography	Preparative

TLC Quality Grades Silica gel 60 types

Particle size distribution:

Classical TLC
 5 - 20 µm

• HPTLC 4 - 8 μm

Spherical particles HPTLC
 4 - 8 µm

Monolithic layer UTLC

Sorbens Types

TLC	HPTLC	PLC
Silica gel 60 Al2O ₃ 60/150 Cellulose (Kieselguhr)	Silica gel 60 Al ₂ O ₃ 60/150 Cellulose	Silica gel 60
RP-2 RP-8 RP-18	RP-2 RP-8 RP-18 <mark>RP-18W</mark>	RP18
NH ₂	NH ₂ CN DIOL	

Backings Glass, aluminium or plastic?

Support	Advantage	
Glass	 no bending best for instrumental HPTLC inert material temperature stable 	
Aluminium Plastic	 20% lower priced then glass simple to cut with scissors allowing for different formats 	

Plate Sizes Fitting the Application

	classical			
Backing	TLC	HPTLC	PLC	
Glass	20 x 20 cm	20 x 10 cm	20 x 20	
	10 x 20 cm	10 x 10 cm		
	5 x 20 cm			
	5 x 10 cm	5 x 10 cm		
		5 x 5 cm		
	2,5 x 7,5 cm			
Aluminium	20 x 20 cm	20 x 20 cm		
	10 x 20 cm			
	5 x 20 cm			
	5 x 10 cm			
	5 x 7,5 cm	5 x 7,5 cm		
Plastic	20 x 20 cm			
	500 x 20 cm			
	4 x 8 cm			

Detection By UV of colourless substances

Green fluorescent indicator F₂₅₄

Blue fluorescent indicator F_{254s}

Sample that adsorb UV light are detected due to fluorescence quenching under the UV lamp

Detection By Derivatisation / Staining

Many staining options

MERCK

Classical TLC or HPTLC ?

	Classical TLC	HPTLC (High performance TLC)
Application	Quick, inexpensive, flexible and portable separations	Highly sophisticated separation problems, complex samples
Analysis	Qualitative analysis	Qualitative & quantitative analysis
Detection	Visual analysis with UV lamp. Virtually no Instrumentation required	Instrumented analysis: use of scanners for detection
Price	Lower priced (25%)	Higher priced

Instruments suppliers: CAMAG, (DESAGA)

HPTLC versus TLC

MERCK

- 5 10 fold increased sensitivity than classical TLC
- Faster analysis (only 15 min compared to 45 min)
- Gold standard for automated use with instrument

Classical TLC silica gel 60 plate

Sample: Separation of dansyl amino acids

Comparison TLC / HPTLC

HPTLC Applications – Herbals

Example: Identification of Gingko

1	2	3	-4	- 5	6	7	8	9	10	-17	- 12	13	-14	-15	- 16	17
				-												
														÷		
														۲		

c) UV 366nm, after derivatization with natural products reagent/PEG

1, 2: Ginkgo leaf, 3: Ginkgo leaf capsule (freeze dried; 1.2-1.8% flavonoids; US), 4: Ginkgo leaf extract powder (Italy), 5: Ginkgo leaf extract powder (China), 6: Ginkgo leaf extract powder (France), 7: Ginkgo leaf extract powder (China), 8: Rutin, 9: Ginkgo leaf extract capsule (60 mg) w/gotu kola (US), 10: Ginkgo leaf extract capsule (60 mg; US), 11: Ginkgo leaf extract tablet (yielding 9 mg flavone glycosides; Switzerland), 12: Ginkgo leaf extract tablet (120 mg; US), 13: Ginkgo leaf extract tablet (120 mg; US), 14: Ginkgo tincture (1:5 dry leaf; US), 15: Ginkgo tincture (1:1 fresh leaf; US), 16: Ginkgo tincture (1:10 fresh leaf, Switzerland: current batch), 17: Ginkgo tincture (1:10 fresh leaf, Switzerland: 2 years past expiration date)

Modern Thin layer Chrom. HPTLC

- Fine particle layers optimized for fast and efficient separations
- Wide range of chemically bonded phases
- Instrumentation for optimum sample application, development and detection
- Accurate and precise in situ quantification of chromatograms

MFRCK

Unique Product Ultra-thin monolithic silica plate (UTLC) MERCK

Features

- Ultra fast
- Very low sample volumes for precious samples
- Extremely sensitivity analysis in the **nI** range
- Binder free and stable in pure water

Applications

- Small simplier samples with low analyte concentration
- Drug discovery

UTLC Part of Monolithic Product Family

Method tranfer from TLC to HPLC

MERCK

Fig. 1: TLC separation (left) and the corresponding HPLC separation (right)

HPLC and TLC

- Separations occur by the same retention mechanism
- Differences arise from:
 - Kinetic performance
 - Stationary phase format
 - Development mode vs. elution
 Disposable stationary phase (TLC)
 - Detection in the presence of the stationary phase (TLC)

Special Product Concentrating Zone Plates

Application - Cosmetics Stability testing of cosmetic ingredients

HPTLC for analysing in difficult matrices such as oils or fat

Is the ingredient X stable as paraffin formulation?

Ingredient (ester, di-ester)
Paraffin
Dichlormethan
Linomat V (CAMAG)
HPTLC Silica gel 60 RP18 F254s Conz.
Ethanol/Wasser 80:20
60 min
5,0 cm
82 min
2 μl (in Dichlormethan)

Pure ingredient (ME1) in Paraffin oil 1% (positive controle)
 Sample in paraffin foil 01:01
 HR in paraffin oil 0,10% (expected degradation product)
 HR in paraffin oil 0,30% (expected degradation product)
 Sample in paraffin oil 01:01
 Pure ingredient (DE) in paraffin oil 1,00% (positive control but not visible under UV)

HPTLC LiChrospher[®] vs. LiChrosorb Highly Compact Bands

Comparison of a mixture of pharma substances

HPTLC silica gel 60

HPTLC LiChrospher[®] silica gel 60

HPTLC LiChrospher[®] vs. LiChrosorb Highly Compact Band

Special Product - LuxPlate®

- Higher content of fluorescent indicator for better contrast against background
- Highly robust, due to higher content of binder
- Comparable retention behaviour

New Products HPTLC Plates for Peptide Analysis

ProteoChrom ®	Sorbent	Format	Layer	Backing	Special
1.05650 HPTLC <mark>Silica gel</mark> F _{254s}	High Performance Silica gel	20 x 10	100 µm	glass	Special binder
1.05651 HPTLC <mark>Cellulose</mark>	High performance Cellulose	10 x 10	100 µm	aluminium	High density layer

Why plates for analysis of protein digests & peptides?

ProteoChrom[®] Features

Phosphitin	Myoglobin	Cytochrome C	β-Casein	BSA
1µl 1.5µl 2µl				
1.0				
				= = =
		= = =		

- Extra thin, extra smooth
- Robust, highly stable in water
- Include easy to follow, optimized protocols

ProteoChrom[®] HPTLC Cellulose 2 D separation of peptides

Sample volume:	5 µl
Concentration:	2 mg/ml
Application:	Linomat V (CAMAG)
Migration distanc	e: 5 cm
Migration time:	1st D: 45 min
	2nd D: 50 min

- Fast, just 4 h from protein digest to result
- Validated for peptide separation

Mass Spectrometry directly from the Plate MERCK

- Impurity and stability applications for synthetic drugs
- Fingerprinting of plant extracts
- Mycotoxins in foods
- Natural and synthetic food colors
- Vitamins

Merck is market leader in a mature market

Market Thin Layer Chrom.

We are by far the market leader in Thin layer chromatography!

Market Thin Layer Chromatography

Total 40 – 50 Mio EUR AGR: 2 %

SDi Global Assessment Report 9th Edition, LCGC Oct.08

Summary

- Single use of stationary phase (TLC and HPTLC) minimizes sample preparation
- Parallel separations enhances sample throughput
- Ease of postchromatographic derivatization
- Can perform several screenings simultaneously for different analytes
- Direct use of biological detection possible
- Fast and low cost screening TLC- procedure used to identify samples that should be investigated further
- We use same raw material for TLC, HPLC and Prep HPLC, which makes easy to transfer method from TLC to HPLC

More on Thin-Layer Chromatography?

Chrombook 06/07

MERCK

MERCK

ChromCircle 06/07

MERCK

MERCK

