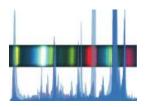


Les Plaques CCM, HPTLC, et Prep

Introduction

Chemierzeugnisse Adsorptionstechnik Muttenz A G (1958) www.camag.com



Club de Chromatographie sur Couche Mince (1998) www.clubdeccm.com

Chromacim SAS (2002) www.chromacim.com

bm@chromacim.com (devis) jd@chromacim.com pdv@chromacim.com (sav) pbs@chromacim.com

International Symposium for HPTLC, Lyon (2003), Berlin (2006), Helsinki (2008), et Bâle du 6 au 8 Juillet 2011 www.hptlc.com

Historique

1903 : M.S.Tswett

1938 : N.A.Ismaïlov et M.S.Shraiber

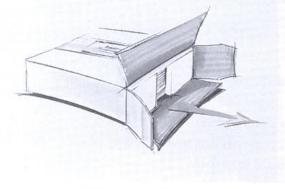
1951 : J.G. Kirchner

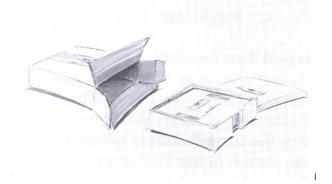
1962 : E.Stahl

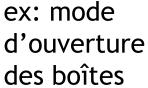
1975 : plaques HPTLC

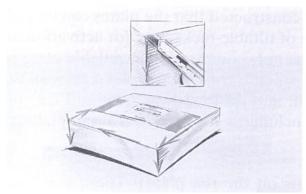
1994 : Plaques HPTLC ultra-fines 100μm

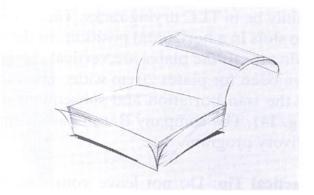
2000 : Plaques Lichrospher

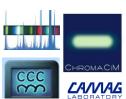

2002 : Plaques UTLC




Précautions pour manipuler les plaques

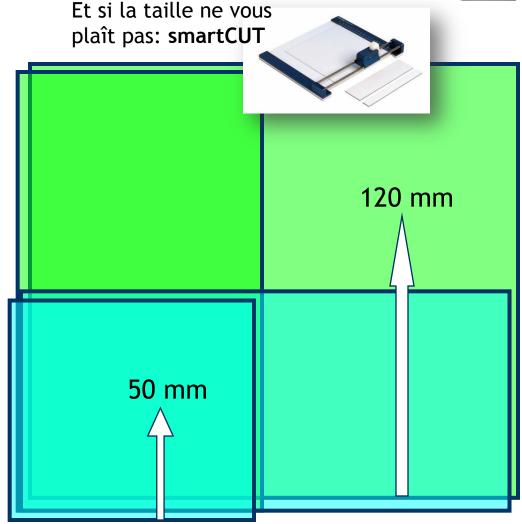



Attention: vous allez manipuler à l'air libre un support de séparation chromatographique analytique, avec lequel il serait préférable de prendre des **précautions**,...



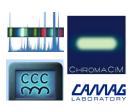
Dimensions des plaques

CCM :

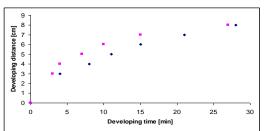

20x20, **10x20**, ou 5x20 cm Migration sur 120 à 150 mm Existe aussi en petites dimensions (5x7.5)

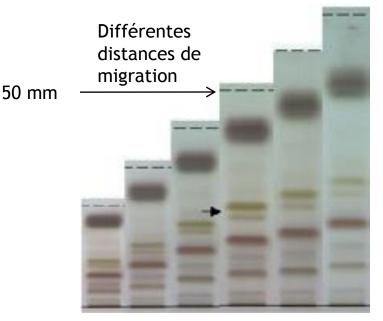
HPTLC:

Taille 10x10 ou **20x10** cm Migration sur 50 mm Existe également en 5x5 cm


CCM :

Taille 20x20 cm Migration sur 120 à 150 mm



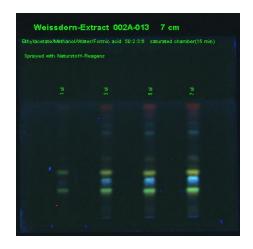

Distance de migration optimale

- Plus on fait migrer loin plus on augmente la diffusion
- Il faut trouver un optimum, et il est toujours préférable de faire migrer moins loin : sensibilité et gain de temps
- Primordial si la plaque est vraiment analytique (HPTLC), ou si l'on veut optimiser les possibilités de purification

Distance et temps de migration

Après normalisation

Jeudi 11 Juin 2009


Exemple sur séparations d'extraits végétaux

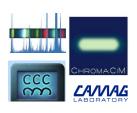
30 mm

50 mm



90 mm

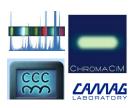
70 mm


Conclusion sur les distances de migration

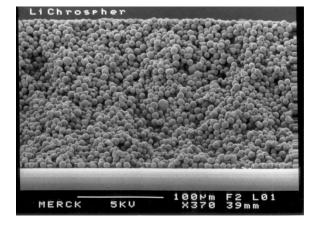
- C'est un paramètre important, qu'il est possible d'optimiser, en fonction de l'objectif
- La pharmacopée européenne (2.2.27) recommande les deux tiers de la plaque
- Il est également impératif de noter la distance à partir du bas de la plaque et à partir du dépôt, pour lever toute ambiguïté
- Le Rf (HRf) est censé rester invariable vis-à-vis de la distance de migration
- Attention de ne pas confondre une plaque CCM 10x20 et une plaque HPTLC 20x10

L'épaisseur de gel sur les plaques

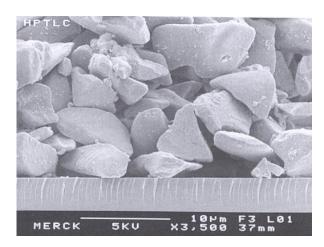
CARACTERISTIQUES:

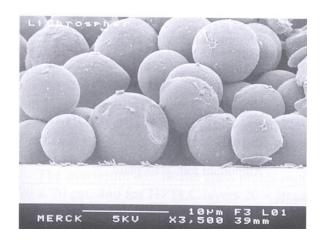

- Les plaques de CCM sont de 250 µm d'épaisseur, sur verre, ou de 200 µm sur aluminium.
- Les HPTLC sont soit de 200 µm soit de 100 µm dans le cas des plaques ultra-fines
- Les plaques préparatives sont de 0.5, 1 ou 2 mm
- Les UTLC sont de l'ordre de 5 µm d'épaisseur

CONSEQUENCES PRATIQUES:


- L'épaisseur du gel est directement lié à la sensibilité sur la plaque : plus le gel est fin, plus la plaque est sensible. (l'autre paramètre est la focalisation des spots).
- Avec des plaques 100 µm on peut descendre au ppt, et avec des plaques Lichrospher on est encore plus sensible
- Si l'on utilise des plaques préparatives, il faudra donc faire attention de ne pas prendre des plaques trop épaisses au risque de ne plus "voir" le produit

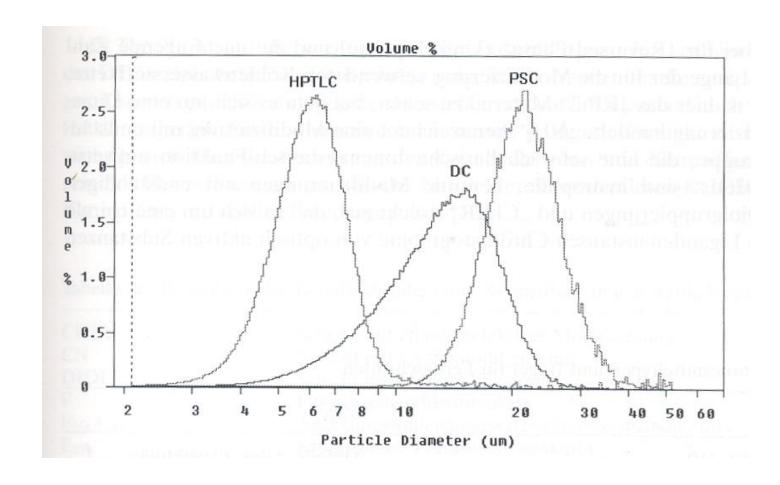
Le gel de silice 60

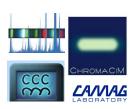




(Lichrosorb)


- Irrégulier (Lichrosorb)ou sphérique (Lichrospher)
- Porosité de 60 Å: permet la transposition au regard des autorités

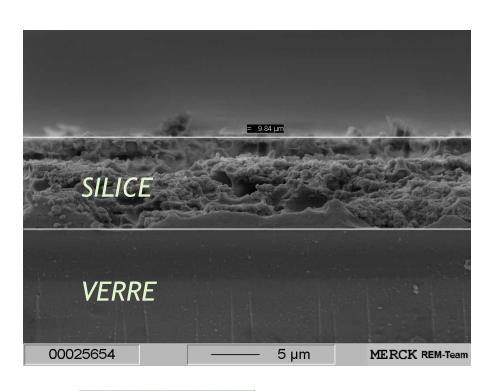



Répartition granulométrique

Cas particulier de la silice monolithique

UTLC

Dimension 60x36 mm Support verre Épaisseur 10 µm Pas de liant Macropores : 1 à 2


microns

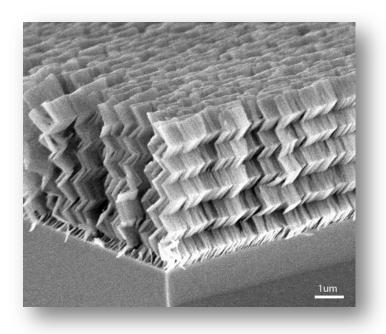
Mésopores 30 à 40 Å Surface Specifique :

 $\sim 350 \text{ m}^2/\text{g}$

Volume specifique :

~ 0,3 ml/g



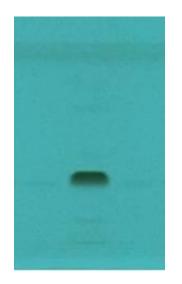

10 nL; 1,5 cm; 165 secondes; pour 3 colorants dans le toluène

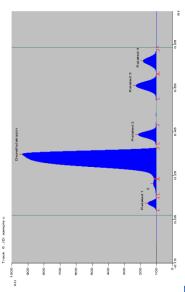
Développements actuels

- Plaques obtenues par GLAD (glancing angle deposition) dépôt d'un film nanostructuré de 5 µm
- Pas de liant
- Contrôle de la forme de la structure (hélicoïdale,...)

D'après Intl Symposium HPTLC, Helsinki 2008: Ultrathin layer chromatography on plates with engineered nanostructure **Louis Bezuidenhout**, University of Alberta, Edmonton, Canada

Additifs dans les plaques : l'indicateur


CHROMACIM


CHROMACIM

LABORATORY

LABORATORY

- L'indicateur de fluorescence permet de visualiser les substances qui absorbent dans l'UV à 254nm et apparaissent en sombre sur un fond fluorescent
- lorsqu'il est présent peut être de deux sortes :
 - F254 de couleur verte, dérivé de Zinc
 - F254S de couleur bleue, dérivé de Molybdène, donc
 Stable aux acides

Même piste, densitogramme à 220 nm

Bolbec

Additifs dans les plaques : le liant

- Le liant : permet de maintenir la silice sur la plaque. Les plaques sans liant (dites « H ») sont très fragiles voire inutilisables.
- Il peut être de différents types, par exemple du plâtre.
 C'est le cas des plaques dites « G », pour « gypsum »
- Les fabricants actuels utilisent un dérivé de PEG
- La qualité du liant et sa teneur dans la plaque sont des garanties de performance et varie d'un fabricant à l'autre
- Seules les plaques monolithiques n'ont pas de liant

Cas particuliers

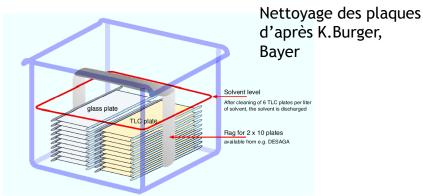
- Lux :plaque avec plus d'indicateur de fluorescence
- Purity: emballée dans un emballage étanche aux gaz (aluminium plastifié)
- W ("wettable") plaque mouillable et résistante à l'eau
- R ("reinst") plaque prénettoyée

CONSEQUENCES PRATIQUES:

- Les plaques Lux ne permettent pas d'augmenter la sensibilité de détection sur la plaque (l'indicateur limite de 5% la sensibilité du densitomètre à 254 nm)
- Il est important de noter que les plaques se chargent spontanément d'impuretés
- D'où l'intérêt des plaques WR qui sont nettoyées et emballées dans un emballage étanche au gaz.

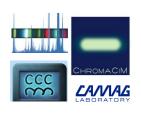
Nettoyage des plaques

Journée du Club de CCM

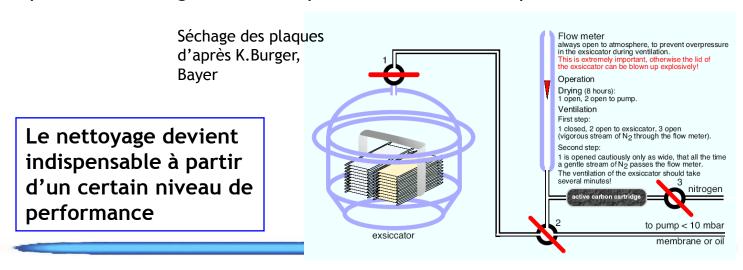

Deux solutions: par migration ou par immersion

MIGRATION

- Isopropanol
- 20mn à 120°C
- Dessicateur (sans silicagel)
- solvant différents :
 attention au séchage +
 impact sur la séparation

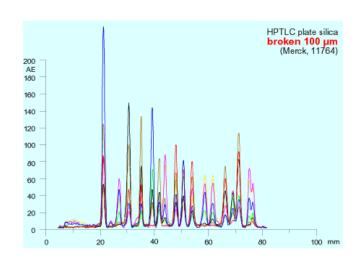

IMMERSION

Automatisable

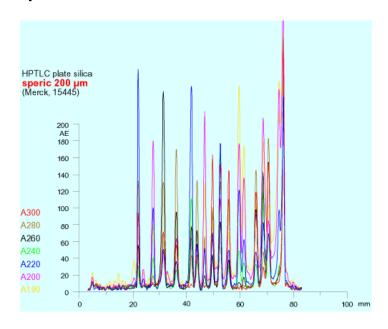


Conséquence du nettoyage des plaques

- migration : les impuretés montent au front : attention au sens de migration lors de l'utilisation
- Immersion: le fond de la plaque est uniforme mais parfois moins bien nettoyé et nécessite une installation particulière
- choix du solvant de nettoyage : le solvant de nettoyage s'il est trop polaire sera difficile à sécher et à éliminer. Peut nécessiter une installation sous vide.
- attention à la modification de l'activité de la Silice qui peut s'apparenter à un conditionnement de la plaque de Silice qui passe de la chromatographie strictement d'absorption à une chromatographie de partage; mais cela peut permettre d'augmenter la reproductibilité de la séparation

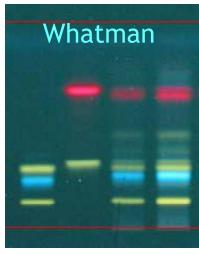


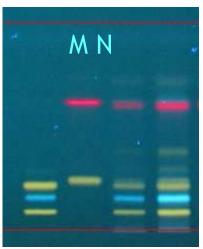
Qui dit performance dit ...



...AMD, ultra thin, WR, et Lichrospher

Séparation de pesticides (100ng)

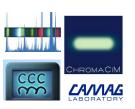

Lichrospher


...puis lecture au densitomètre multi longueur d'ondes (190nm>)



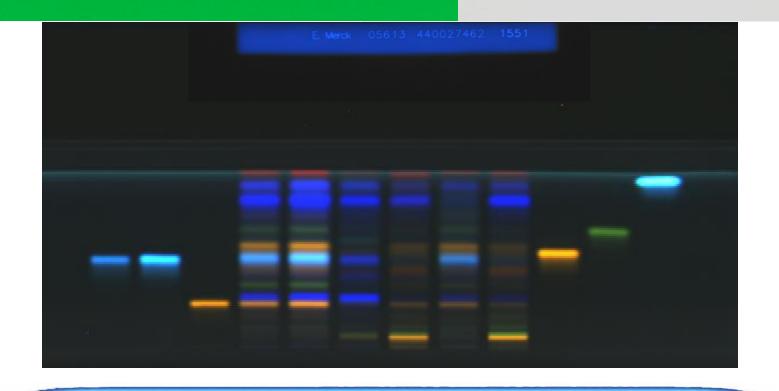
Et le choix du bon fournisseur...

Performance et données expérimentales



Données expérimentales comparatives (Klaus BURGER)

thickness (µm)	pH of layer	fluorescence indikator	Productnumber	typical use
HPTLC Standard broken material				
100	"alkaline"	+	11764	pH-Gradient, pesticides
200	"alkaline"	-	5641	pH-Gradient, pesticides
200	"alkaline"	+	5642	pH-Gradient, pesticides
Plaques WR				
100	"acidic"	-	(110556)	acidic and alkaline separations
100	"acidic"	+	12363	universal gradient
200	"acidic"	+	15552	for acids and bases
Lichrospher spheric material				
200	"acidic"	+	15445	best separations and detection limits



Archivage BPL et BPF

E Marck 05613 440027462 1551

E. Merck 05613 440027462 1551

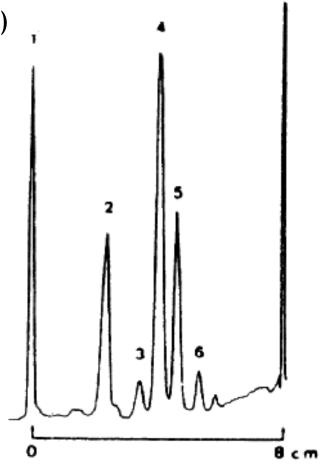
C'est sur l'étiquette

- CCM, HPTLC
- Silice 60
- support
- F254, S
- Lux
- Purity
- WR

et, au besoin, le greffage (que nous allons voir maintenant)

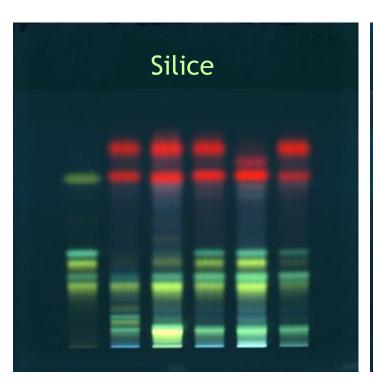


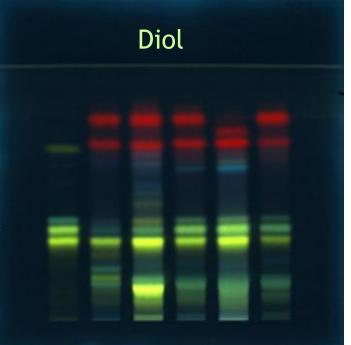
Ordre des polarités : Silice, Diol, NH2, CN, RP2, RP8, RP18w, RP18.




Diol (silice greffée propyl-diol)

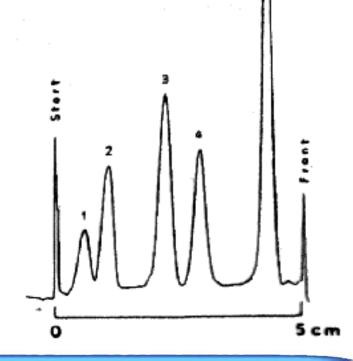
Ethyl acetate/NH4OH à 25% : 100/1


1.Lanatoside C 2.Digoxine 3.Digitoxine 4.Digoxigenine 5.alpha-Acetyldigoxine 6.Digitoxigenine



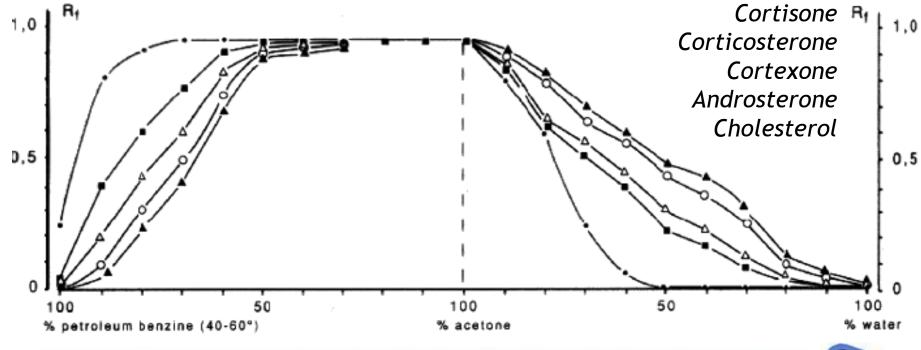


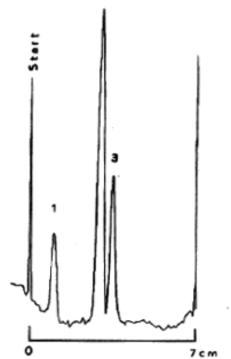
Diol (silice greffée propyl-diol)



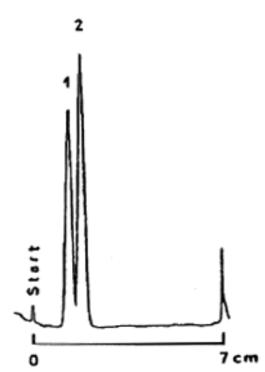

NH2 (silice greffée amino-propyl)

ACN/H2O:30/70 UV254nm


1. UTP 2.UDP 3.UMP 4.UDP-Glucose 5.Uridine



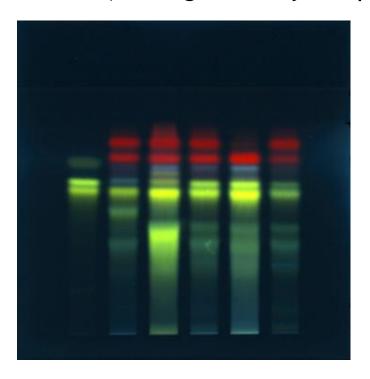
CN (silice greffée cyano-propyl)



CN (silice greffée cyano-propyl)

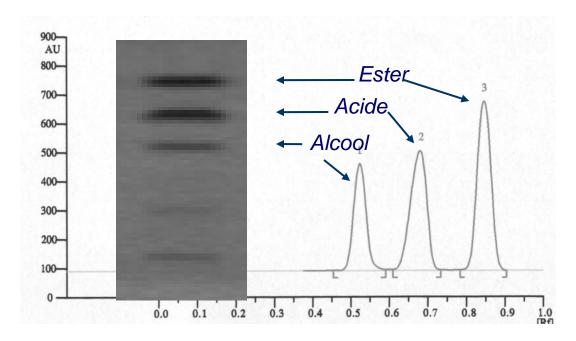


Petrol ether / Aceton:80/20 1.Estriol,2.Estradiol,3.Estrone

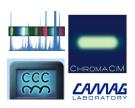


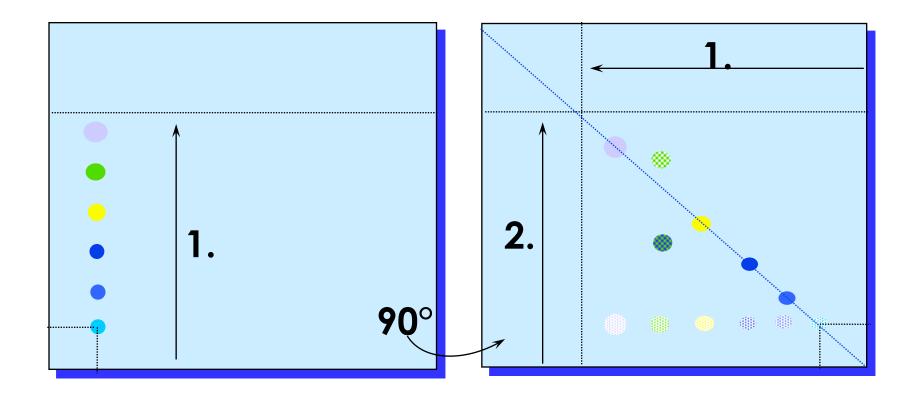
EtOH/H2O:20/80 + 0,1 mole/L Tetraethylammonium chloride 1.Benzoïc ac.,2.Sorbic ac.

CN (silice greffée cyano-propyl)


Phase directe

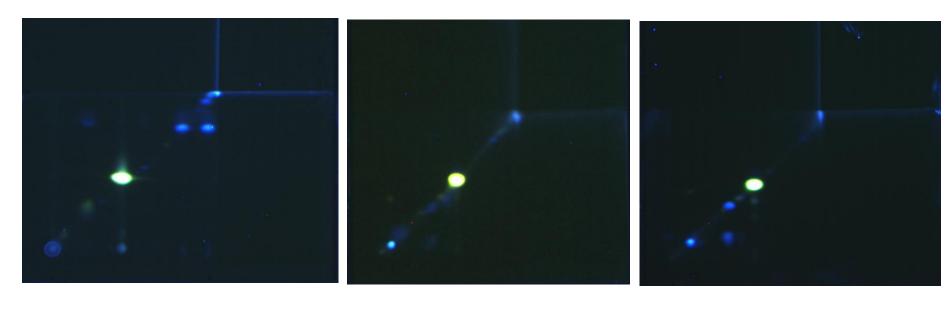
Phase inverse




 Exemple d'un bilan d'esterification sur plaque CN (silice greffée cyano-propyl)

... car on peut vérifier la stabilité sur la plaque

Technique SRS: Séparation-Réaction-Séparation


 \dots Avec le même solvant, mais en tournant la plaque de 90°

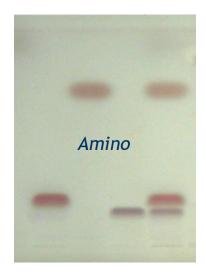
Exemple d'instabilité pris dans les pharmacopées

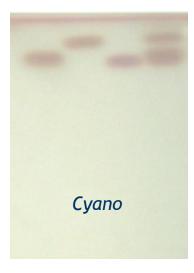
 Comparaison de 3 méthodes pour l'Hydrastis, dont deux monographies de Pharmacopées

Pharmacopée Chinoise

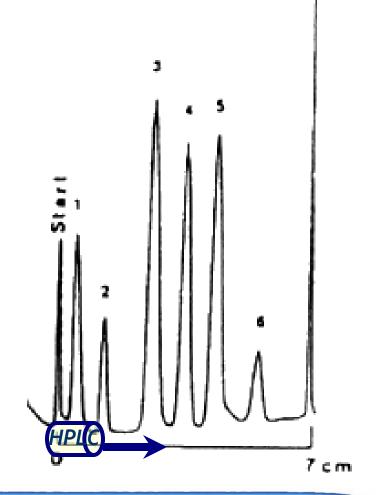
Méthode CAMAG

Pharmacopée US


Jeudi 11 Juin 2009

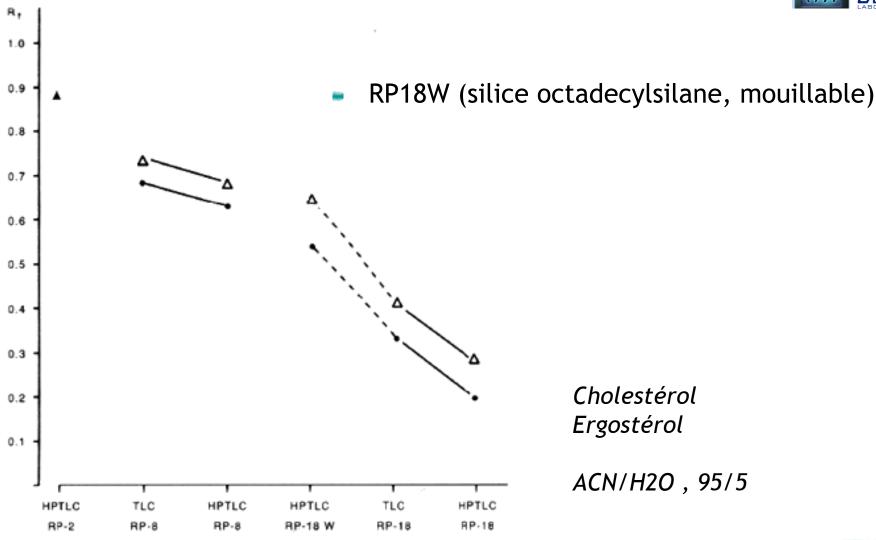


- Phase mobile: toluène
- Visualisation: acide sulfurique

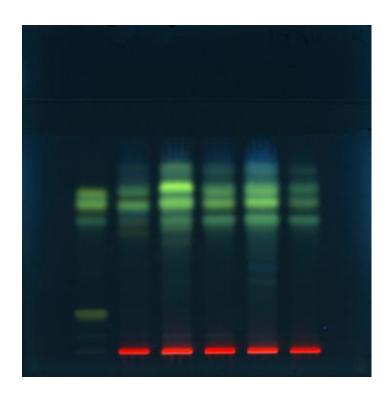


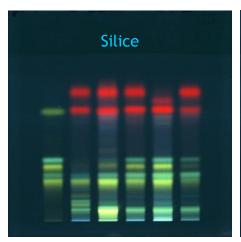
RP2 (silice silanisée)

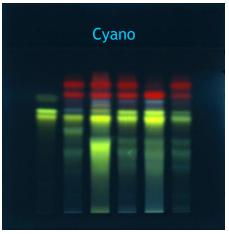
Migration: MeOH/ 1N acetic ac.: 80/20

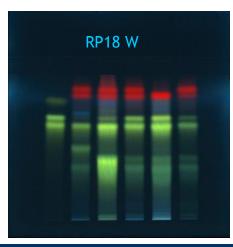

RMnCl2-ac.Sulf.; 5 mn à 120°C/ 366nm

1. Cholésterol 2. 7-Hydroxycholésterol 3. Ac. Lithocholique 4. Ac. Me.Ester Cholique 5. Ac. Cholique 6. Ac. Déhydrocholique

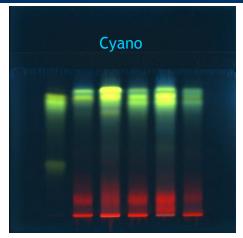


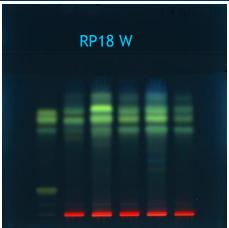

RP18W (silice octadecylsilane, mouillable)





Phase normale

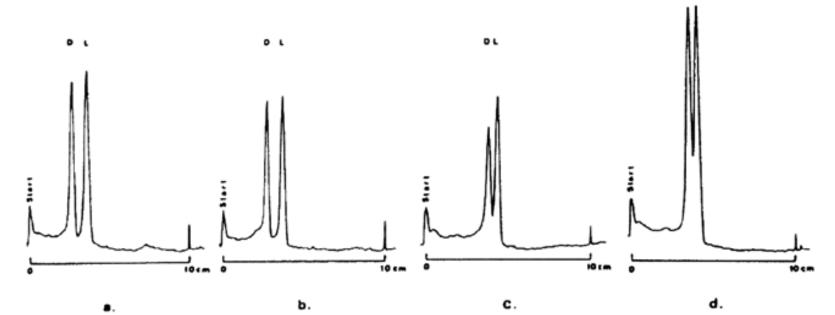




Solvants de migration :Normal = THF, toluène, acide formique, eau (24:12:3:1.5)Inverse = méthanol, acide formique, eau (5.5:1:4.5).


Un témoin contenant : Vitexine, orientine, isovitexine, isoorientine, chrysine et 5 échantillons de Fleurs de la Passion

Phase inverse



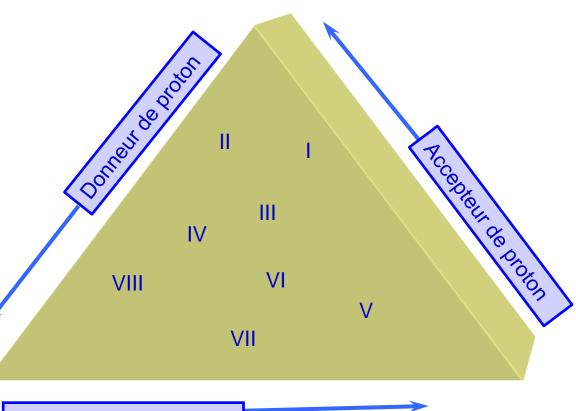
 Chir (silice RP18 imprégnée d'une hydroxyproline par l'intermédiaire d'un atome de cuivre)

Alpha-aminoacides: a Phe; b Trp; c Tyr; d Val.

Solvent: MeOH/H2O/ACN: 50/50/30; revelation: Ninhydrin

Choix des plaques et chromatographie

- Modes de chromatographie
 - Adsorption (**Si**) : différence de rétention des fonctions chimiques.
 - Partage (RP): élution des séries d'isomères en fonction de leur polarité.
 - lonique: interactions ioniques entre la phase et les molécules plus ou moins retenues.
 - Complexe (chir, caffeine) : formation de complexes de stabilité différente entraînés plus ou moins loin sur la plaque.

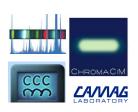


Ce qui retient les molécules...

- Energies d'interaction (rétention des molécules en Kj/mole) :
- van der Waals 5-20
- dipôle 8-25/25-40
- liaison Hydrogène 25-40
- liaison ionique 250-1050
- (covalente 670-3360)

Interactions avec les solvants:
Triangle de Snyder (1978)

Interactions dipôlaires


Choix des plaques, concrètement

- Silice = 80%, mais attention à l'humidité (les autres phases sont insensibles à l'humidité)
- **Diol** pour éviter l'humidité et les **pics traînants**
- RP lorsque les substances trop polaires restent au Rf0 (W=100% H2O)
- **NH2** échange d'**ions** et révélation par chauffage
- CN vraiment intermédiaire
- Chir pour les diastéréoisomères des dérivés d'Ac.Aminés
- Attention à la pérennité et la reproductibilité des autres phases

Merci de votre attention...

Comme j'ai sûrement oublié de parler de choses qui vous intéressent, n'hésitez pas à poser vos questions...

