
## Nettoyage en production chez sanofi aventis Neuville :

- Stratégie site nettoyage
  - Démarche analytique



CLUB de CCM Neuville- sur-Saône - 23 Octobre 2008



# Nettoyage en production Sommaire

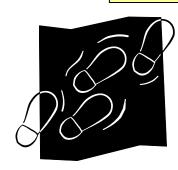
Stratégie site pour le nettoyage des équipements de production

Démarche analytique de validation de nettoyage

Conclusion






## Rappel des BPF (Bonnes Pratiques de Fabrication)

Maîtriser la qualité du produit



Assurer la traçabilité des produits

Éviter les contaminations



Référentiel ICH Q7

§ sur nettoyage

5.2-6.2-8.5-12.7





## Nettoyage en production Sommaire

- Stratégie site nettoyage
  - ► Notion de familles et classes d'appareils
  - Principe & processus de validation de nettoyage
  - Mode opératoire de Nettoyage Objectif
  - Vérification de nettoyage
  - Documentation associée au nettoyage
- Démarche analytique
- Conclusion





## Familles et classes d'appareil

- Classement des appareils par familles et classes:
  - Type d'appareillage : réacteur, sécheur, essoreuse
  - Matériau : inox, émail
  - ➤ Volume de l'appareil : entre 2000 et 10 000 L

Ex : Réacteur inox classe 2 (Volume compris entre 2500 et 6000 L) Sécheur bicône émail





## Principe de validation nettoyage

Validation des modes opératoires de nettoyage par familles et classes:

#### Pour chaque classe:

- Sélectionner 3 produits et 3 appareils différents (si possible)
- Définir le mode opératoire de nettoyage de la classe ex : 4 reflux de 200 L de solvant pendant 30 minutes pour la famille réacteur inox classe I
- Définir la Plus Petite Production (PPP) ex :150 kg
- Principe de validation:
  - 3 charges (soit 3 essais de validation) pour chacun des 3 produits
  - si utilisation du même appareil : 1 seul essai
- Cas particuliers de validation par produit :
  - Produits finis fabriqués dans des équipements polyvalents
  - Produits nettoyés selon des modes opératoires différents de ceux décrits dans les classes

Pour chaque produit : 3 charges (soit 3 essais )





## Principe de Validation de nettoyage

| Produits                 | Commerciaux<br>(appareillage dédié ou polyvalent)                                                |  |
|--------------------------|--------------------------------------------------------------------------------------------------|--|
| Prélèvements et analyses | Les 4 lavages                                                                                    |  |
| Critère N° 1 :           | Vérification visuelle de l'appareil : propreté de l'appareil satisfaisante                       |  |
| Critère N° 2 :           | Conformité au critère d'acceptation (objectif) sur le 4ème lavage                                |  |
| Critère N° 3 :           | Dégressivité des résultats analytiques<br>entre le 1 <sup>er</sup> et le 4 <sup>ème</sup> lavage |  |

#### Essai de validation accepté :

- Critère N° 1 conforme .
- Critères N° 2 et 3 conformes

En cas de non-conformité : gestion d'anomalie / déviation

#### Mode opératoire validé :

Les 3 critères des N charges définis dans le protocole sont conformes

=> en routine : 3 lavages, pas de prélèvement, pas d'analyse





## Nettoyage en production Sommaire

- Stratégie site nettoyage
  - Notion de familles et classes d'appareils
  - Principe & processus de validation de nettoyage
  - Mode opératoire de Nettoyage Objectif
  - Vérification de nettoyage
  - Documentation associé au nettoyage
- Démarche analytique
- Conclusion





## Mode opératoire de nettoyage

#### Types de nettoyage

- Reflux, rinçage, remplissage
- Nombre et volume de lavages à définir
- Si nécessaire : prélavage avec solvant différent

#### Agents de nettoyage

- Choix du solvant : bon compromis entre toxicité et solubilité
- Solvants recommandés : eau déminéralisée, acétone, méthanol...
- Solubilité > 10 g/L

#### Cas des détergents

- Améliorer le nettoyage en limitant l'utilisation de solvant
- Utilisation de détergents alimentaires approuvés par la Qualité et EHS
- Vérifier l'efficacité du nettoyage et l'élimination du détergent

#### Prélèvement:

- Prélèvement liquide (solvants ) : cas des réacteurs, sécheurs
- Prélèvements chiffon : cas des étuves, essoreuses (validation du prélèvement chiffon par détermination du taux de recouvrement)





## Détermination de l'objectif - critères d'acceptation

- Critères d'acceptation cas général:
  - 20 ppm pour les produits très actifs
  - 50 ppm pour les produits actifs à dose élevée
  - ➤ 100 ppm pour les intermédiaires
- Pour tout nouveau produit fabriqué sur le site
  - Calcul du MACO : quantité maximale tolérable résiduelle d'un produit A dans un produit B . Fonction des volumes produits, de la quantité administrée et de la forme pharmaceutique
  - Critère retenu : le plus défavorable entre MACO et cas général

NB: MACO: Maximum allowable carry over





## Nettoyage en production Sommaire

- Stratégie site nettoyage
  - Notion de familles et classes d'appareils
  - Principe & processus de validation de nettoyage
  - Mode opératoire de Nettoyage Objectif
  - Vérification de nettoyage
  - Documentation associée au nettoyage
- Démarche analytique
- Conclusion





## Vérification de nettoyage

- Cas des produits en développement
  - On ne cherche pas à valider le mode opératoire
  - On veut s'assurer que l'appareil est propre : absence de contamination
  - ⇒ Vérification de nettoyage
- Principe de vérification de nettoyage
  - Prélèvement et analyse du dernier lavage uniquement
  - Analyse rapide / non spécifique. Ex : extrait sec
  - Objectif
    - 50 ppm si produit suivant est un produit fini (principe actif)
    - 1 100 ppm si le produit suivant est un intermédiaire





Produit à

nettoyer

## Ex document : Tableaux de lavages

Caractéristiques de l'équipement

Plus petite production dans l'équipement

Type et statut de validation/ vérification

nettoyage

de

**GG 4111-04** (réf SAP : 301601)

Classe 2, Inox, 3600L

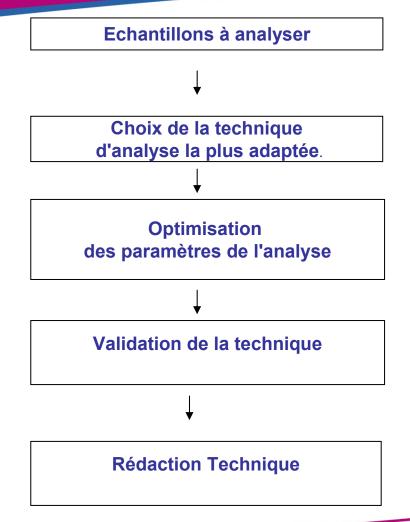
Rapport PVN 03-001, PPP = 150 kg,  $3 \times 250 \text{L}$ 

Contrôle Prélavage Solubilité (g/L) APRES LE STADE ... Méthode de nettoyage UO Prélèvements analytique Aucun EAU D - 80°C -Produit A 3 REFLUX METHANOL 250L DE 30 MIN PAR Validé 315 720 1H prélèvement LA GOULOTTE 1. NETTOYAGE GOULOTTE Prélever les 4 EAU D - 80°C -Validation 770 Produit B 2. 4 REFLUX METHANOL 250L DE 30 MIN 225 1H reflux PAR LA GOULOTTE 1. NETTOYAGE GOULOTTE Prélever les 4 **Produit C** 2. 4 REFLUX METHANOL 250L DE 30 MIN Validation 225 770 reflux PAR LA GOULOTTE Prélever 1 L le EAU D - 80°C -4 REFLUX **METHANOL** 250L DE 30 MIN **PAR Produit D** Vérification 300 > 600 1H 4ème reflux LA GOULOTTE

> Mode opératoire du nettoyage à effectuer

Solubilité: ≥ 10 g/L pour un nettoyage efficace.






- Politique site
- Démarche analytique
  - Processus de gestion des nettoyages au laboratoire
  - Choix des techniques analytiques
  - Validation analytique d'une méthode CCM
- Conclusion





## Processus de gestion des nettoyages au laboratoire







# **Choix des Techniques analytiques**

|              | Validation                             | Vérification                                     |
|--------------|----------------------------------------|--------------------------------------------------|
| Contaminants | Contaminants ciblés Composition connue | Ensemble des contaminants Composition non connue |
| Méthode      | Spécifique                             | Non spécifique                                   |
| Analyses     | CCM<br>CPV<br>HPLC                     | Extrait Sec<br>COT                               |





# Analyse de validation de nettoyage au CQ : choix de la méthode

## Prise en compte

- du type d'analyse en routine
- de la sensibilité demandée
- du coût de l'analyse
- du temps d'analyse

## Pourquoi la CCM ?

- Rapidité : délai de rendu du résultat pour libérer les équipements de production
- Analyse simultanée d'un nombre d'échantillons important
- ► Faible coût (ex : solvant , immobilisation appareillage)





## **Equipement du laboratoire Contrôle Qualité**













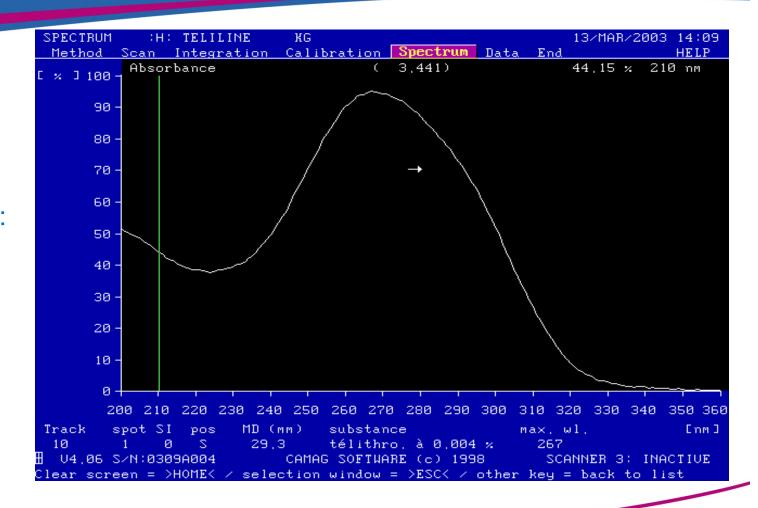


- Politique site
- Démarche analytique
  - Processus de gestion des nettoyage au laboratoire
  - Choix des techniques analytiques
  - Validation analytique d'une méthode CCM:
- Conclusion





# Ex : Validation d'une technique d'analyse par scanner d'un principe actif dans des eaux de lavages


- Recherche du maximum d'absorption du produit
- Recherche de la limite de détection et limite de quantification
- Recherche du domaine de travail
- Répétabilité de la limite de quantification
- Rédaction de la technique analytique
- Exemples





## Recherche du maximum d'absorption du produit

Spectre entre
200 et 360 nm:
le maximum
d'absorbance
est à 267 nm





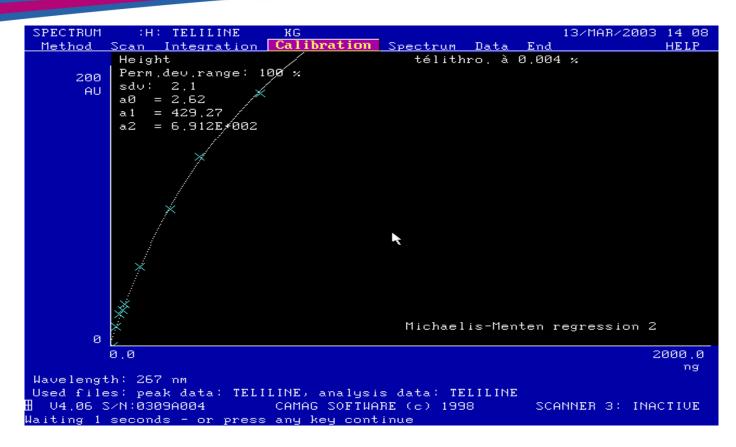


## Recherche de la limite de détection et limite de quantification



Recherche de la limite de détection :

LD (limite de détection) >3 S/B (signal/bruit)




Limite de quantification > 3 LD





## Recherche du domaine de travail



Recherche de la zone de travail et du modèle de régression le plus adapté



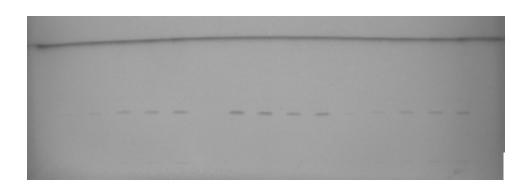


Spécification ≤ 10 %

# Répétabilité de la limite de quantification

| LECTURE AU S       | SCANNER A 267 nm | Dépôt à 0,1 μg |  |  |
|--------------------|------------------|----------------|--|--|
| Pesée 1 = 0,0409 g |                  |                |  |  |
|                    | Par hauteur :    | Par surface :  |  |  |
|                    | 57,25            | 413,31         |  |  |
|                    | 57,86            | 397,19         |  |  |
|                    | 61,18            | 460,18         |  |  |
|                    | 62,67            | 436,13         |  |  |
|                    | 60,83            | 428,69         |  |  |
|                    | 56,43            | 402,79         |  |  |
|                    | 60,28            | 445,77         |  |  |
|                    | 60,15            | 433,32         |  |  |
|                    | 60,70            | 424,59         |  |  |
|                    | 49,97            | 374,83         |  |  |
| CV:                | 6,20             | 5,96           |  |  |
| Pesée 2 = 0,0402 g |                  |                |  |  |
|                    | 55,25            | 426,17         |  |  |
|                    | 57,12            | 446,39         |  |  |
|                    | 56,19            | 390,86         |  |  |
|                    | 49,96            | 369,44         |  |  |
| CV:                | 5,87             | 8,47           |  |  |
| Ecart en %:        | 5,5              | 1,5            |  |  |






## Rédaction de la Technique de Contrôle

- Donne une description précise et complète des conditions chromatographiques ce qui permet d'assurer la reproductibilité
- Contient un exemple de feuille de dépôts
- Présente un chromatogramme type et une photo de la plaque







# Profil Chromatographique

## **Plaque CCM**







## Exemple de calcul

### Expression du 1er point de gamme en g/L puis en ppm



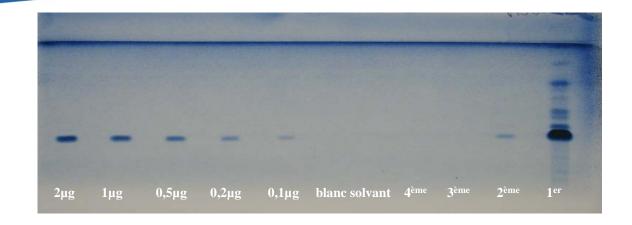
Comparaison avec l'objectif fixé à 50 ppm

Produit S — 1er point : 0,1 µg ppp 150 Kg

→ Volume déposé : 5500 nL volume de lavage 200 L

C (g/L) = 
$$\frac{0.1 * 10^{-6}}{5500 * 10^{-9}}$$
 = 0.018g/L

Gamme : 
$$0,1-0,2-0,5-1-2~\mu g$$










## Recherche de produit S





Produit S >> 485 ppm (>> 2 μg)
Autres impuretés >> 485 ppm (>> 2 μg)
Somme totale des impuretés >> 970 ppm



Produit S < 48 ppm (< 0,2 µg)
Autres impuretés < 24 ppm (< 0,1µg)
Somme totale des impuretés < 72 ppm



Produit S << 24 ppm (ND) (<< 0,1 µg)

Somme totale des impuretés < 24 ppm

#### >Critère n°1:

Lavage de validité conforme < 50 ppm

**≻Critère n°2:** 

Dégressivité satisfaisante





## Nettoyage en production Sommaire

## Stratégie site de nettoyage

- Notion de familles et classes d'appareils
- Principe & processus de validation de nettoyage
- Mode opératoire de Nettoyage Objectif
- Vérification de nettoyage
- Gestion des non conformités
- Documentation associée au nettoyage

## Démarche analytique

- Processus de gestion des nettoyage au laboratoire
- Choix des techniques analytiques
- Validation analytique d'une méthode CCM:
  - l Paramètres à vérifier
  - Exemples

### Conclusion





## Conclusion

- Conditions de réussite d'une validation de nettoyage:
  - Respect du mode opératoire : en particulier nombre et volume de lavages, solvant,
  - Représentativité du prélèvement Etiquetage correct
  - Bonne sensibilité de la méthode analytique
  - ➤ Bilan périodique Retour d'expérience pour améliorer en continu le processus de nettoyage
  - Formation continue des opérateurs et analystes

#### Axes d'amélioration :

- Intégrer les aspects économiques et exigences qualité / EHS
- ► Utiliser les détergents alimentaires en réponse à des nettoyages non satisfaisants
- Cas des vérifications de nettoyage : en fonction des résultats, diminuer le nombre de lavages
- Travailler par campagnes : nettoyage intra-campagne allégé pas de vérification ou validation de nettoyage





# Merci de votre attention











#### Processus de validation de nettoyage : Responsabilités

#### Etablissement d'un protocole de validation de nettoyage

Mode opératoire – Type de prélèvement - Objectif – Technique d'analyse

Assurance Qualité - Atelier de Production — Contrôle Qualité

Réalisation du nettoyage - Prélèvement

**Atelier de Production** 

Analyse des échantillons de validation de nettoyage selon technique analytique validée Contrôle Qualité

Rapport de validation de nettoyage

Assurance Qualité - Atelier de Production — Contrôle Qualité





## Validation / Vérification de nettoyage

|                          | Validation                                                                                                                | Vérification                                                      |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Produits                 | Commerciaux<br>(dédié ou polyvalent)                                                                                      | En développement                                                  |  |
| Prélèvements et analyses | Chaque lavage                                                                                                             | Uniquement le<br>4ème lavage                                      |  |
| Critère N° 1             | Vérification visuelle : propreté de l'appareil satisfaisante                                                              |                                                                   |  |
| Critère N° 2             | Sur le 4ème lavage : objectif atteint                                                                                     |                                                                   |  |
| Critère N° 3             | Dégressivité entre le 1er et le<br>4ème lavage                                                                            | /                                                                 |  |
| $\Rightarrow$            | Mode opératoire Validé après<br>3 charges conformes<br>=> en routine : 3 lavages, pas<br>de prélèvement, pas<br>d'analyse | Vérification<br>systématique de l'<br>absence de<br>contamination |  |





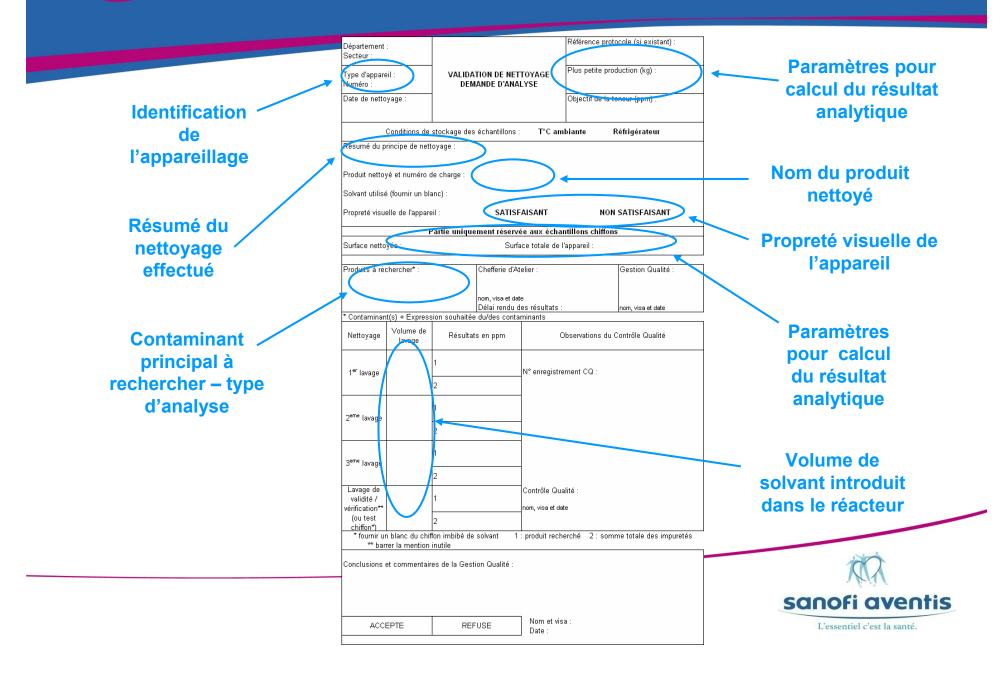
## Gestion des non-conformités



- Cas d'essai de validation ou vérification de nettoyage non conformes
  - Emission d'une fiche incident : investigations atelier, laboratoire et assurance qualité
  - Cibler l'origine de la non-conformité : anomalie analytique, mode opératoire non satisfaisant, prélèvement non représentatif...
  - Actions correctrices
    - Ré-évaluation du résultat en fonction du produit suivant : type et unité opératoire
    - Si nécessaire : lavage supplémentaire QS objectif atteint
  - Actions correctives
    - Modification du mode opératoire : solvant, ajout de prélavage...
    - Mise à jour des tableaux de lavage
    - Amendement au protocole 3 essais de validation supplémentaires






## **Gestion documentaire - Nettoyage**

- Documents généraux :
  - Procédure site de nettoyage
  - Consignes atelier de nettoyage avec tableaux de lavages
  - Master de feuille de nettoyage
  - Technique d'analyse Données de validation analytique
  - Données de solubilités produits
- Documents liés aux essais de validations/ vérification de nettoyage:
  - Protocole et rapport de validation
  - Feuilles de nettoyage
  - Demande d'analyse avec données brutes analytiques





## Ex Document : Demande d'analyse des échantillons





# Détermination du taux de recouvrement (cas des chiffons)

- ✔ Définition : la quantité de produit pouvant être récupérée grâce à la méthode d'échantillonnage choisie (valide la méthode de prélèvement).
- Pour déterminer ce taux de recouvrement global il faut connaître le rendement de désorption analytique
- Définition du rendement de désorption analytique
  - ➤ Quantité de contaminant mesurée X 100 / Quantité de contaminant déposée
- Méthodologie
  - Dépôt d'une quantité connue de produit
  - ► Immersion du chiffon dans le solvant
  - Analyse du solvant
- Utilisation du taux de rendement analytique
  - ➤ Si le taux de recouvrement est compris entre 50 et 70%, il est pris en compte dans le rendu des résultats
  - ➤ Par contre si ce taux est supérieur à 70% il sera considéré comme à 100% et ne sera pas pris en compte dans le calcul et le rendu des résultats.





- Transferts de procédé
- Revalidation des modes opératoires

### Lors du transfert de nouveaux produits

- Récupérer les données de solubilité produit,
- Récupérer les méthodes analytiques : CCM en priorité (mises au point lors du développement du produit)
- Calcul du MACO (critère d'acceptation)
- Re-évaluation de la PPP (plus petite production )
- Essais de validation : 1 à 3 essais (complémentaires à la validation par classe) en fonction de l'appareillage, du produit, de la polyvalence et du mode opératoire utilisé.

### Revalidation des modes opératoires

- Fréquence de revalidation : 1 à 3 ans. Fréquence définie en fonction du produit, de la fréquence de fabrication et polyvalence des équipements.
- Vérifier la dégressivité et la validité du dernier lavage .
- Prendre en priorité nouveaux produits.

