

#### Why choosing HPTLC?



G. Morlock, Institute of Food Chemistry University of Hohenheim, Stuttgart



#### Where TLC is...





#### HPTLC $\rightarrow$ Part of modern quantitative analysis





### HPTLC $\rightarrow$ Automated equipment per step



 $\rightarrow$  Chamber climate control enables reproducibility





University of Hohenheim, Stuttgart

Institute of Food Chemistry

### $HPTLC \rightarrow Quantitative method$





#### HPTLC $\rightarrow$ Sensitive method (detectability)



G. Morlock, W. Schwack, Anal. Bioanal. Chem 385 (2006) 586-595



#### ... but other methods as well $\rightarrow$ Why HPTLC?







#### Plate heights of the different methods





#### Plate numbers $\rightarrow$ Why HPTLC?







#### Why HPTLC?



Reaching the water source you have to swim against the mainstream. *Konfuzius* 



### Why choosing HPTLC?



- 1. Gives more information about an unknown
- 2. Tolerates minimized sample preparation
- 3. Enables concentration during application up to a factor of 10.000
- 4. Capable of high throughput (300 runs per day) with minimal costs
- 5. Runs parallel chromatography under identical environmental conditions
- 6. Enables selective and simultaneous derivatization (variety of reagents)
- 7. Enables multiple detection (UV/Vis, FLD, derivatization, MS)
- 8. Allows toxicity-directed detection (information directed to the effect)
- 9. Runs highly-targeted, cost-effective HPTLC-MS where separation solvent can be chosen independently from MS
- 10. Is a very flexible working station



#### 1. Gives more information about an unknown





Project: Find the difference in Lactobacillus fermentum supernatants



#### 2. Tolerates minimized sample preparation

 $\rightarrow$  For high matrix-loading choose area application





#### Matrix of milk-based confection left at the start





#### 3. Enables concentration during application

- $\rightarrow$  Dynamic application volumes: 0.1  $\mu L-1$  mL
- $\rightarrow$  Concentration factor of up to 10.000





#### 4. Capable of high throughput $\rightarrow$ parallel...



G. Morlock, S. Prabda, J. Agric. Food Chem. 55 (2007) 7217-7223



#### 5. ... under identical environmental conditions

A) Sucralose quantification in milk-based confection



G. Morlock, S. Prabda, J. Agric. Food Chem. 55 (2007) 7217-7223



#### Monitoring of products of hydrolysis



Part of the plate image illuminated at 366/>400 nm



#### 5. ... under identical environmental conditions





#### 5. ... under identical environmental conditions

B) Pyridinol quantification in solid formulations

- $\rightarrow$  Repeatability (n=6) in matrix of RSD = 0.4 %
- $\rightarrow$  Intermediate precision (n=3) in matrix of RSD = 2.95 %
- $\rightarrow$  Recoveries of spiked samples (three levels) of 98.5 to 101.9% ± 3.6 to 4.7%
- $\rightarrow$  LOD/LOQ of 0.6 and 2.0  $\mu\text{g/mL}$  (6 and 20 ng/band)
- $\rightarrow$  Up to 17 times less mobile phase consumption
- $\rightarrow$  At least 2 times faster (10 x 10 cm plate, one side)

 $\rightarrow$  Selectivity proved by spectra purity and MS





#### In this case the plate number is highly sufficient!





#### We must ask: Why HPLC?





#### We must ask: Why HPLC?



"Personally, I no longer trust the mainstream media."





Determination of heterocyclic aromatic amines (HAA) in meat





#### 5. High throughput $\rightarrow$ cost efficiency

#### Determination of 5 HAA in meat

| Costs                               | HPLC   | HPTLC                          |
|-------------------------------------|--------|--------------------------------|
| Mobil phase (incl. plate precond.)  | 4,93   | 0,33                           |
| Stationary phase (incl. pre-column) | 7,02   | 4,00                           |
| Euro                                | 11,94  | 4,33                           |
|                                     |        | $\rightarrow$ Factor 3 cheaper |
| Throughput                          | HPLC   | HPTLC                          |
| Application/Injection               | 1,0    | 3,0                            |
| Chromatography/gradient time        | 15,6   | 1,1                            |
| Fluorescence intens. & MWL scan     | -      | 0,2                            |
| Time [h]                            | 16,6   | 4,3                            |
|                                     |        | $\rightarrow$ Factor 4 faster  |
| Labor                               | HPLC   | HPTLC                          |
| All steps automated                 | online | offline                        |
| Stand-by time                       | → none | $\rightarrow$ 5 min            |

U. Jautz, M. Gibis, G. Morlock, in preparation





U. Jautz, M. Gibis, G. Morlock, in preparation

14





U. Jautz, M. Gibis, G. Morlock, in preparation



#### 6. Enables selective derivatizations on **one** plate







## gari University of Hohenheim, Stutt Institute of Food Chemistry

#### A) Easiness of derivatizations



Project: What substance is in the root exudate of some plants that attract specific N-producing bacteria



#### A) Easiness of derivatizations



#### $\rightarrow$ variety of reagents



Project: What substance is in the root exudate of some plants that attract specific N-producing bacteria



### B) Flexibility of derivatizations

 $\rightarrow$  Dialkyl phosphates as breakdown products during fruit juice processing





-OMe `OMe



C. Stiefel, W. Schwack, Proceedings of EuroFoodChem 2 (2007) 289-292



#### C) Simultaneous derivatization of all tracks



A. Alpmann, G. Morlock, J Sep Sci (2007) in press



### C) Simultaneous derivatization of all tracks

|          | Ground water<br>spiked with<br>acylamide [ug/L] | HPLC-MS/MS<br>Acylamide [µg/L] | HPTLC/FLD<br>Acylamide [µg/L] |
|----------|-------------------------------------------------|--------------------------------|-------------------------------|
| Sample 1 | -                                               | < LOQ                          | < LOQ                         |
| Sample 2 | 0.05                                            | 0.07                           | 0.09                          |
| Sample 3 | 0.15                                            | 0.18                           | 0.24                          |
| Sample 4 | 0.50                                            | 0.59                           | 0.60                          |



A. Alpmann, G. Morlock, J Sep Sci (2007) in press



#### D) Reproducible derivatizations







### 7. Enables multiple detections

 $\rightarrow$  UV/Vis library search, spectra identity and purity

- $\rightarrow$  Spectra identity for 3 milk-based samples:
  - $r \geq 0.99974$  for ITX at 5 ng/zone
  - $r \geq 0.99984$  for DTX at 14 ng/zone



G. Morlock, W. Schwack, Anal. Bioanal. Chem 385 (2006) 586-595



#### A) MWL scan for UV/FLD

Simultaneous determination of caffeine, ergotamine and metamizol



Calibration with  $r^2 > 0.999$ Recoveries in pharmaceutical products: 102.8 % ± 2.8 % for ergotamine

102.8 %  $\pm$  2.8 % for ergotamine 106.6 %  $\pm$  3.2 % for caffeine 104.7 %  $\pm$  2.2 % for metamizol


## A) Confirmation by MS

→ Simultaneous determination of caffeine, ergotamine and metamizol



M. Aranda and G. Morlock J Chromatogr Sci 45 (2007) 251-255



## A) Confirmation by MS

#### Simultaneous determination of caffeine, ergotamine and metamizol



M. Aranda and G. Morlock J Chromatogr Sci 45 (2007) 251-255



## B) MWL scan for UV/FLD $\rightarrow$ derivatization $\rightarrow$ Vis

Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine and taurine in energy drinks



garl University of Hohenheim, Stutt Institute of Food Chemistry



## B) MWL scan for UV/FLD $\rightarrow$ derivatization $\rightarrow$ Vis

Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine and taurine in energy drinks



- ✓ Calibration with  $r^2 > 0.999$
- ✓ Recoveries in energy drinks (3 levels) between 81 and 106 % with RSD range from 0.5 to 7.4%







## B) Confirmation by MS

Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine and taurine in energy drinks



M. Aranda, G. Morlock, J Chromatogr A 1131 (2006) 253-260



## B) Confirmation by MS

Simultaneous determination of riboflavin, pyridoxine, nicotinamide, caffeine and taurine in energy drinks



M. Aranda, G. Morlock, J Chromatogr A 1131 (2006) 253-260



## Biomonitoring of toxic compounds







## 8. Allows toxicity-directed detection

Luminescent bacteria test in cuvette  $\rightarrow$  ISO 11348-3 (1999)

 $\rightarrow$  detection of toxic compounds as a sum parameter





University of Hohenheim, Stuttgart Institute of Food Chemistry



#### Luminescent bacterium Vibrio Fischeri





### Detection of luminescent bacteria





## Protocol

Luminescent bacteria  $\rightarrow$  **NEW**: combined with HPTLC

Coupling chromatography with a toxicity-directed detection system  $\rightarrow$  effect-directed analysis  $\leftrightarrow$  different approach to target-analysis  $\rightarrow$  detection of **single** toxic compounds



EP 0588 139 B1, ChromaDex, www.bioluminex.com/applications W. Kreiss (Bayer Industries) et al. CBS 88 (2002) 12-13 W. Weber (Federal water supply Langenau) et al. CBS 97 (2006) 2-4



Example: Phenols (W. Kreiss, Bayer Industries)





Project: Screening of marine sponges for toxic compounds





Project: Screening of marine sponges for toxic compounds





Project: Screening of marine sponges for toxic compounds

→ avoids laborious isolation of potential toxic compounds each followed, as proof, by the test of bioactivity



garl University of Hohenheim, Stutt Institute of Food Chemistry



# 9. Cost-effective coupling with MS





- → highly targeted recording
- → reduced costs and storage of data
- → separation solvent independently from mass spectrometry



#### U. Jautz, G. Morlock, Anal. Bioanal. Chem. 387 (2007) 1083-1093



- Universally connectable to any LC-MS system given
- Without adjustments or mass spectrometer modifications
- Fully automated (hands-free)
- Cost-effective
- Suited for normal phase plates
- Detectability down to the pg/zone-range
- With good linear range and repeatability
- Should withstand validated methods









#### **Online extraction**



H. Luftmann, Anal Bioanal Chem 378 (2004) 964-968 A. Alpmann, G. Morlock, Anal Bioanal Chem 386 (2006) 1543-1551



#### The hands-free interface called 'R3D3'





University of Hohenheim, Stuttgart

Institute of Food Chemistry

## R3D3 working...





H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) in press



## Data of validation without IS

- $\rightarrow$  repeatability in matrix of RSD = 5.6 % (n = 6)
- $\rightarrow$  linear response with determination coefficient of R<sup>2</sup> = 0.9973



H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) in press



## Analysis of samples containing caffeine

 $\rightarrow$  comparable findings to validated HPTLC/UV methods (F-test, t-test)

| Sample         | Pharmaceutical<br>mean ± SD<br>(mg/tablet) | Energy drink<br>mean ± SD<br>(mg/100 mL) |
|----------------|--------------------------------------------|------------------------------------------|
| HPTLC/ESI-MS   | 102.09 ± 5.76                              | <mark>32.91 ±</mark> 1.60                |
| RSD (%, n = 6) | (5.6)                                      | (4.9)                                    |
| HPTLC/UV       | 101.98 ± 2.30                              | <mark>33.71</mark> ± 0.96                |
| RSD (%, n = 5) | (2.3)                                      | (2.8)                                    |
| Label          | 100                                        | 32                                       |

H. Luftmann, M. Aranda, G. Morlock, Rapid Commun Mass Spectrom 21 (2007) in press



## Comparison of different cutting edges



Time [min]

gari University of Hohenheim, Stutt Institute of Food Chemistry



### Detectability: FLD versus MSD



University of Hohenheim, Stuttgart Institute of Food Chemistry



## Detectability by HPTLC/ESI-MS-MS

- $\rightarrow$  LOQ better than 20 pg/zone Harman (S/N 20)
- $\rightarrow$  detectability comparable to HPLC/MS



U. Jautz, G. Morlock, J Chromatogr A 58 (2006) 244-250



#### 600.0 [ AU ] Repeatability of extraction 400.0 300.0 200.0 SIM at *m/z* 329 with RSD 6.6 % (n=9, 1 µg/band)... SIR of 1 Channel ES+ Glasprobe28 Sm (SG, 2x4) 7.16 100-19.37 21.69 4.4014.01 9.19 16.42 2.08 11.51 %-1.98 2.00 4.00 6.00 8.00 10.00 14.00 16.00 18.00 22.00 24.00 12.00 20.00

600.0

[ AU ]

400.0

300.0

200.0

100.0

0.0 20 20(mm 10.0

TIC

1.15e8

Time

Institute of Food Chemistry University of Hohenheim, Stuttgart



# Trace analysis: Food contaminant ITX

Elution profiles of 6 ng ITX each Repeatability RSD =  $\pm$  6.7 % (*n* = 5)





SIM at *m*/*z* 255 [M+H]<sup>+</sup> and 277 [M+Na]<sup>+</sup>

G. Morlock, W. Schwack, Anal Bioanal Chem 385 (2006) 586-595



### Trace analysis: Food contaminant ITX





University of Hohenheim, Stuttgart Institute of Food Chemistry



G. Morlock, W. Schwack, Anal Bioanal Chem 385 (2006) 586-595



#### Analytical response



Elution profiles of ITX (SIM at *m/z* 255 [M+H]<sup>+</sup> and 277 [M+Na]<sup>+</sup>)

of Hohenheim, Stuttgart Institute of Food Chemistry University



Elution profiles of ITX (SIM at *m*/*z* 255 [M+H]<sup>+</sup> and 277 [M+Na]<sup>+</sup>)



## Confirmation by HPTLC/ESI-MS



Elution profiles (SIM at m/z 255 [M+H]<sup>+</sup> and 277 [M+Na]<sup>+</sup>)

→ Yoghurt samples spiked with ITX





University of Hohenheim, Stuttgart Institute of Food Chemistry



## DART - Direct Analysis in Real Time



R. Cody, J. Laramée, H. Dupont Durst Anal Chem 77 (2005) 2297-2302



**University of Hohenheim, Stuttgart** Institute of Food Chemistry

![](_page_70_Picture_0.jpeg)

![](_page_70_Figure_1.jpeg)

University of Hohenheim, Stuttgart Institute of Food Chemistry

![](_page_71_Picture_0.jpeg)

### HPTLC/DART coupling

![](_page_71_Figure_2.jpeg)

![](_page_71_Figure_3.jpeg)


### HPTLC/DART-TOF



G. Morlock, W. Schwack, Anal Bioanal Chem 385 (2006) 586-595 G. Morlock, W. Schwack, CBS 96 (2006) 11-13

gari University of Hohenheim, Stutt Institute of Food Chemistry



# Repeatability



5 zones, 32 ng ITX each: RSD = **± 71.1 %** 



G. Morlock, Y. Ueda, J Chromatgr A 1143 (2007) 243-251G. Morlock, Y. Ueda, LCGC The Peak June (2007) 7-14

gart University of Hohenheim, Stutt Institute of Food Chemistry

Isopropylthioxanthone (ITX)



# HPTLC/DART-IDA-TOF

- Repeatability RSD **< 5.4** %, *n* = 6
- Coefficient of determination R<sup>2</sup> = 0.9892



Caffeine at m/z 195 [M+H]<sup>+</sup> corrected by the stable isotope labeled internal standard caffeine D3 at m/z 198 [M+H]+



# Plate holder









# Spatial resolution of DART

University of Hohenheim, Stuttgart Institute of Food Chemistry





Institute of Food Chemistry



gart

University of Hohenheim, Stutt

Institute of Food Chemistry

### HPTLC/APGD-TOF coupling



G. Morlock, F. Andrade, G. Hieftje, in preparation



#### HPTLC/APGD-TOF



gart University of Hohenheim, Stutt Institute of Food Chemistry



#### HPTLC/APGD-TOF



University of Hohenheim, Stuttgart Institute of Food Chemistry



# Comparison of interfaces

- DART &  $\rightarrow$  dry desorption technique  $\longleftarrow$  DESI
  - $\rightarrow$  no plate preparation etc.  $\leftarrow$  SALDI, MALDI
  - $\rightarrow$  eased handling (ambient conditions)
    - → simple spectra → MALDI
    - $\rightarrow$  quantitativ *with* internal standard  $\rightarrow$  scanfunction



ESI via R3D3

APGD

- ✓ universally connectable to any LC-MS system given
- ✓ without adjustments or mass spectrometer modifications
- ✓ fully automated (hands-free)
- ✓ whole plate (no cut)
- ✓ all layers and carriers
- ✓ cost-effective
- ✓ detectability in the pg/zone-range
- $\checkmark\,$  with good linear range and repeatability
- ✓ withstand validated methods





# 10. Flexible working station





At one HPTLC working place  $\rightarrow$  4 persons work on 4 different projects  $\rightarrow$  300 runs per day (staggered system)



# Why choosing HPTLC?

- 1. Gives more information about an unknown
- 2. Tolerates minimized sample preparation



- 3. Enables concentration during application up to a factor of 10.000
- 4. Capable of high throughput (300 runs per day) with minimal costs
- 5. Runs parallel chromatography under identical environmental conditions
- 6. Enables selective and simultaneous derivatization (variety of reagents)
- 7. Enables multiple detection (UV/Vis, FLD, derivatization, MS)
- 8. Allows toxicity-directed detection (information directed to the effect)
- 9. Runs highly-targeted, cost-effective HPTLC-MS where separation solvent can be chosen independently from MS
- 10. Usage as flexible working station



### Special thanks go to ...



Chromacim Voiron/F, CAMAG, Muttenz/CH Merck, Darmstadt/D Jeol (Europe), Paris/F ChromAn, Holzhausen/D Landesstiftung BW (Projekt Nr. P-LS-E2/25)







CHROMart by Drs. Karla und Herbert Halpaap